RFC Abstracts

RFC8904 - DNS Whitelist (DNSWL) Email Authentication Method Extension
This document describes an email authentication method compliant with RFC 8601. The method consists of looking up the sender's IP address in a DNS whitelist. This document provides information in case the method is seen in the field, suggests a useful practice, and registers the relevant keywords.
RFC8903 - Use Cases for DDoS Open Threat Signaling
The DDoS Open Threat Signaling (DOTS) effort is intended to provide protocols to facilitate interoperability across disparate DDoS Mitigation solutions. This document presents sample use cases that describe the interactions expected between the DOTS components as well as DOTS messaging exchanges. These use cases are meant to identify the interacting DOTS components, how they collaborate, and what the typical information to be exchanged is.
RFC8902 - TLS Authentication Using Intelligent Transport System (ITS) Certificates
The IEEE and ETSI have specified a type of end-entity certificate. This document defines an experimental change to TLS to support IEEE/ETSI certificate types to authenticate TLS entities.
RFC8901 - Multi-Signer DNSSEC Models
Many enterprises today employ the service of multiple DNS providers to distribute their authoritative DNS service. Deploying DNSSEC in such an environment may present some challenges, depending on the configuration and feature set in use. In particular, when each DNS provider independently signs zone data with their own keys, additional key-management mechanisms are necessary. This document presents deployment models that accommodate this scenario and describes these key-management requirements. These models do not require any changes to the behavior of validating resolvers, nor do they impose the new key-management requirements on authoritative servers not involved in multi-signer configurations.
RFC8900 - IP Fragmentation Considered Fragile
This document describes IP fragmentation and explains how it introduces fragility to Internet communication.
RFC8899 - Packetization Layer Path MTU Discovery for Datagram Transports
This document specifies Datagram Packetization Layer Path MTU Discovery (DPLPMTUD). This is a robust method for Path MTU Discovery (PMTUD) for datagram Packetization Layers (PLs). It allows a PL, or a datagram application that uses a PL, to discover whether a network path can support the current size of datagram. This can be used to detect and reduce the message size when a sender encounters a packet black hole. It can also probe a network path to discover whether the maximum packet size can be increased. This provides functionality for datagram transports that is equivalent to the PLPMTUD specification for TCP, specified in RFC 4821, which it updates. It also updates the UDP Usage Guidelines to refer to this method for use with UDP datagrams and updates SCTP.
RFC8898 - Third-Party Token-Based Authentication and Authorization for Session Initiation Protocol (SIP)
This document defines the "Bearer" authentication scheme for the Session Initiation Protocol (SIP) and a mechanism by which user authentication and SIP registration authorization is delegated to a third party, using the OAuth 2.0 framework and OpenID Connect Core 1.0. This document updates RFC 3261 to provide guidance on how a SIP User Agent Client (UAC) responds to a SIP 401/407 response that contains multiple WWW-Authenticate/Proxy-Authenticate header fields.
RFC8897 - Requirements for Resource Public Key Infrastructure (RPKI) Relying Parties
This document provides a single reference point for requirements for Relying Party (RP) software for use in the Resource Public Key Infrastructure (RPKI). It cites requirements that appear in several RPKI RFCs, making it easier for implementers to become aware of these requirements. Over time, this RFC will be updated to reflect changes to the requirements and guidance specified in the RFCs discussed herein.
RFC8896 - Application-Layer Traffic Optimization (ALTO) Cost Calendar
This document is an extension to the base Application-Layer Traffic Optimization (ALTO) protocol. It extends the ALTO cost information service so that applications decide not only 'where' to connect but also 'when'. This is useful for applications that need to perform bulk data transfer and would like to schedule these transfers during an off-peak hour, for example. This extension introduces the ALTO Cost Calendar with which an ALTO Server exposes ALTO cost values in JSON arrays where each value corresponds to a given time interval. The time intervals, as well as other Calendar attributes, are specified in the Information Resources Directory and ALTO Server responses.
RFC8895 - Application-Layer Traffic Optimization (ALTO) Incremental Updates Using Server-Sent Events (SSE)
The Application-Layer Traffic Optimization (ALTO) protocol (RFC 7285) provides network-related information, called network information resources, to client applications so that clients can make informed decisions in utilizing network resources. This document presents a mechanism to allow an ALTO server to push updates to ALTO clients to achieve two benefits: (1) updates can be incremental, in that if only a small section of an information resource changes, the ALTO server can send just the changes and (2) updates can be immediate, in that the ALTO server can send updates as soon as they are available.
RFC8894 - Simple Certificate Enrolment Protocol
This document specifies the Simple Certificate Enrolment Protocol (SCEP), a PKI protocol that leverages existing technology by using Cryptographic Message Syntax (CMS, formerly known as PKCS #7) and PKCS #10 over HTTP. SCEP is the evolution of the enrolment protocol sponsored by Cisco Systems, which enjoys wide support in both client and server implementations, as well as being relied upon by numerous other industry standards that work with certificates.
RFC8893 - Resource Public Key Infrastructure (RPKI) Origin Validation for BGP Export
A BGP speaker may perform Resource Public Key Infrastructure (RPKI) origin validation not only on routes received from BGP neighbors and routes that are redistributed from other routing protocols, but also on routes it sends to BGP neighbors. For egress policy, it is important that the classification use the 'effective origin AS' of the processed route, which may specifically be altered by the commonly available knobs, such as removing private ASes, confederation handling, and other modifications of the origin AS. This document updates RFC 6811.
RFC8892 - Guidelines and Registration Procedures for Interface Types and Tunnel Types
This document provides guidelines and procedures for those who are defining, registering, or evaluating definitions of new interface types ("ifType" values) and tunnel types. The original definition of the IANA interface type registry predated the use of IANA Considerations sections and YANG modules, so some confusion arose over time. Tunnel types were added later, with the same requirements and allocation policy as interface types. This document updates RFC 2863 and provides updated guidance for these registries.
RFC8891 - GOST R 34.12-2015: Block Cipher "Magma"
In addition to a new cipher with a block length of n=128 bits (referred to as "Kuznyechik" and described in RFC 7801), Russian Federal standard GOST R 34.12-2015 includes an updated version of the block cipher with a block length of n=64 bits and key length of k=256 bits, which is also referred to as "Magma". The algorithm is an updated version of an older block cipher with a block length of n=64 bits described in GOST 28147-89 (RFC 5830). This document is intended to be a source of information about the updated version of the 64-bit cipher. It may facilitate the use of the block cipher in Internet applications by providing information for developers and users of the GOST 64-bit cipher with the revised version of the cipher for encryption and decryption.
RFC8890 - The Internet is for End Users
This document explains why the IAB believes that, when there is a conflict between the interests of end users of the Internet and other parties, IETF decisions should favor end users. It also explores how the IETF can more effectively achieve this.
RFC8889 - Multipoint Alternate-Marking Method for Passive and Hybrid Performance Monitoring
The Alternate-Marking method, as presented in RFC 8321, can only be applied to point-to-point flows, because it assumes that all the packets of the flow measured on one node are measured again by a single second node. This document generalizes and expands this methodology to measure any kind of unicast flow whose packets can follow several different paths in the network -- in wider terms, a multipoint-to-multipoint network. For this reason, the technique here described is called "Multipoint Alternate Marking".
RFC8888 - RTP Control Protocol (RTCP) Feedback for Congestion Control
An effective RTP congestion control algorithm requires more fine-grained feedback on packet loss, timing, and Explicit Congestion Notification (ECN) marks than is provided by the standard RTP Control Protocol (RTCP) Sender Report (SR) and Receiver Report (RR) packets. This document describes an RTCP feedback message intended to enable congestion control for interactive real-time traffic using RTP. The feedback message is designed for use with a sender-based congestion control algorithm, in which the receiver of an RTP flow sends back to the sender RTCP feedback packets containing the information the sender needs to perform congestion control.
RFC8887 - A JSON Meta Application Protocol (JMAP) Subprotocol for WebSocket
This document defines a binding for the JSON Meta Application Protocol (JMAP) over a WebSocket transport layer. The WebSocket binding for JMAP provides higher performance than the current HTTP binding for JMAP.
RFC8886 - Secure Device Install
Deploying a new network device in a location where the operator has no staff of its own often requires that an employee physically travel to the location to perform the initial install and configuration, even in shared facilities with "remote-hands" (or similar) support. In many cases, this could be avoided if there were an easy way to transfer the initial configuration to a new device while still maintaining confidentiality of the configuration.
RFC8885 - Proxy Mobile IPv6 Extensions for Distributed Mobility Management
Distributed Mobility Management solutions allow networks to be set up in such a way that traffic is distributed optimally and centrally deployed anchors are not relied upon to provide IP mobility support.
RFC8884 - Research Directions for Using Information-Centric Networking (ICN) in Disaster Scenarios
Information-Centric Networking (ICN) is a new paradigm where the network provides users with named content instead of communication channels between hosts. This document outlines some research directions for ICN with respect to applying ICN approaches for coping with natural or human-generated, large-scale disasters. This document is a product of the Information-Centric Networking Research Group (ICNRG).
RFC8883 - ICMPv6 Errors for Discarding Packets Due to Processing Limits
Network nodes may discard packets if they are unable to process protocol headers of packets due to processing constraints or limits. When such packets are dropped, the sender receives no indication, so it cannot take action to address the cause of discarded packets. This specification defines several new ICMPv6 errors that can be sent by a node that discards packets because it is unable to process the protocol headers. A node that receives such an ICMPv6 error may use the information to diagnose packet loss and may modify what it sends in future packets to avoid subsequent packet discards.
RFC8882 - DNS-Based Service Discovery (DNS-SD) Privacy and Security Requirements
DNS-SD (DNS-based Service Discovery) normally discloses information about devices offering and requesting services. This information includes hostnames, network parameters, and possibly a further description of the corresponding service instance. Especially when mobile devices engage in DNS-based Service Discovery at a public hotspot, serious privacy problems arise. We analyze the requirements of a privacy-respecting discovery service.
RFC8881 - Network File System (NFS) Version 4 Minor Version 1 Protocol
This document describes the Network File System (NFS) version 4 minor version 1, including features retained from the base protocol (NFS version 4 minor version 0, which is specified in RFC 7530) and protocol extensions made subsequently. The later minor version has no dependencies on NFS version 4 minor version 0, and is considered a separate protocol.
RFC8880 - Special Use Domain Name 'ipv4only.arpa'
NAT64 (Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers) allows client devices using IPv6 to communicate with servers that have only IPv4 connectivity.
RFC8879 - TLS Certificate Compression
In TLS handshakes, certificate chains often take up the majority of the bytes transmitted.
RFC8878 - Zstandard Compression and the 'application/zstd' Media Type
Zstandard, or "zstd" (pronounced "zee standard"), is a lossless data compression mechanism. This document describes the mechanism and registers a media type, content encoding, and a structured syntax suffix to be used when transporting zstd-compressed content via MIME.
RFC8877 - Guidelines for Defining Packet Timestamps
Various network protocols make use of binary-encoded timestamps that are incorporated in the protocol packet format, referred to as "packet timestamps" for short. This document specifies guidelines for defining packet timestamp formats in networking protocols at various layers. It also presents three recommended timestamp formats. The target audience of this document includes network protocol designers. It is expected that a new network protocol that requires a packet timestamp will, in most cases, use one of the recommended timestamp formats. If none of the recommended formats fits the protocol requirements, the new protocol specification should specify the format of the packet timestamp according to the guidelines in this document.
RFC8876 - Non-interactive Emergency Calls
Use of the Internet for emergency calling is described in RFC 6443, 'Framework for Emergency Calling Using Internet Multimedia'. In some cases of emergency calls, the transmission of application data is all that is needed, and no interactive media channel is established: a situation referred to as 'non-interactive emergency calls', where, unlike most emergency calls, there is no two-way interactive media such as voice or video or text. This document describes use of a SIP MESSAGE transaction that includes a container for the data based on the Common Alerting Protocol (CAP). That type of emergency request does not establish a session, distinguishing it from SIP INVITE, which does. Any device that needs to initiate a request for emergency services without an interactive media channel would use the mechanisms in this document.
RFC8875 - Working Group GitHub Administration
The use of GitHub in IETF working group processes is increasing. This document describes uses and conventions for working groups that are considering starting to use GitHub. It does not mandate any processes and does not require changes to the processes used by current and future working groups not using GitHub.
RFC8874 - Working Group GitHub Usage Guidance
This document provides a set of guidelines for working groups that choose to use GitHub for their work.
RFC8873 - Message Session Relay Protocol (MSRP) over Data Channels
This document specifies how a Web Real-Time Communication (WebRTC) data channel can be used as a transport mechanism for the Message Session Relay Protocol (MSRP) and how the Session Description Protocol (SDP) offer/answer mechanism can be used to negotiate such a data channel, referred to as an MSRP data channel. Two network configurations are supported: the connection of two MSRP data channel endpoints; and a gateway configuration, which connects an MSRP data channel endpoint with an MSRP endpoint that uses either TCP or TLS. This document updates RFC 4975.
RFC8872 - Guidelines for Using the Multiplexing Features of RTP to Support Multiple Media Streams
The Real-time Transport Protocol (RTP) is a flexible protocol that can be used in a wide range of applications, networks, and system topologies. That flexibility makes for wide applicability but can complicate the application design process. One particular design question that has received much attention is how to support multiple media streams in RTP. This memo discusses the available options and design trade-offs, and provides guidelines on how to use the multiplexing features of RTP to support multiple media streams.
RFC8871 - A Solution Framework for Private Media in Privacy-Enhanced RTP Conferencing (PERC)
This document describes a solution framework for ensuring that media confidentiality and integrity are maintained end to end within the context of a switched conferencing environment where Media Distributors are not trusted with the end-to-end media encryption keys. The solution builds upon existing security mechanisms defined for the Real-time Transport Protocol (RTP).
RFC8870 - Encrypted Key Transport for DTLS and Secure RTP
Encrypted Key Transport (EKT) is an extension to DTLS (Datagram Transport Layer Security) and the Secure Real-time Transport Protocol (SRTP) that provides for the secure transport of SRTP master keys, rollover counters, and other information within SRTP. This facility enables SRTP for decentralized conferences by distributing a common key to all of the conference endpoints.
RFC8869 - Evaluation Test Cases for Interactive Real-Time Media over Wireless Networks
The Real-time Transport Protocol (RTP) is a common transport choice for interactive multimedia communication applications. The performance of these applications typically depends on a well-functioning congestion control algorithm. To ensure a seamless and robust user experience, a well-designed RTP-based congestion control algorithm should work well across all access network types. This document describes test cases for evaluating performances of candidate congestion control algorithms over cellular and Wi-Fi networks.
RFC8868 - Evaluating Congestion Control for Interactive Real-Time Media
The Real-Time Transport Protocol (RTP) is used to transmit media in telephony and video conferencing applications. This document describes the guidelines to evaluate new congestion control algorithms for interactive point-to-point real-time media.
RFC8867 - Test Cases for Evaluating Congestion Control for Interactive Real-Time Media
The Real-time Transport Protocol (RTP) is used to transmit media in multimedia telephony applications. These applications are typically required to implement congestion control. This document describes the test cases to be used in the performance evaluation of such congestion control algorithms in a controlled environment.
RFC8866 - SDP: Session Description Protocol
This memo defines the Session Description Protocol (SDP). SDP is intended for describing multimedia sessions for the purposes of session announcement, session invitation, and other forms of multimedia session initiation. This document obsoletes RFC 4566.
RFC8865 - T.140 Real-Time Text Conversation over WebRTC Data Channels
This document specifies how a Web Real-Time Communication (WebRTC) data channel can be used as a transport mechanism for real-time text using the ITU-T Protocol for multimedia application text conversation (Recommendation ITU-T T.140) and how the Session Description Protocol (SDP) offer/answer mechanism can be used to negotiate such a data channel, referred to as a T.140 data channel. This document updates RFC 8373 to specify its use with WebRTC data channels.
RFC8864 - Negotiation Data Channels Using the Session Description Protocol (SDP)
Data channel setup can be done using either the in-band Data Channel Establishment Protocol (DCEP) or some out-of-band non-DCEP protocol. This document specifies how the SDP (Session Description Protocol) offer/answer exchange can be used to achieve an out-of-band non-DCEP negotiation for establishing a data channel.
RFC8863 - Interactive Connectivity Establishment Patiently Awaiting Connectivity (ICE PAC)
During the process of establishing peer-to-peer connectivity, Interactive Connectivity Establishment (ICE) agents can encounter situations where they have no candidate pairs to check, and, as a result, conclude that ICE processing has failed. However, because additional candidate pairs can be discovered during ICE processing, declaring failure at this point may be premature. This document discusses when these situations can occur.
RFC8862 - Best Practices for Securing RTP Media Signaled with SIP
Although the Session Initiation Protocol (SIP) includes a suite of security services that has been expanded by numerous specifications over the years, there is no single place that explains how to use SIP to establish confidential media sessions. Additionally, existing mechanisms have some feature gaps that need to be identified and resolved in order for them to address the pervasive monitoring threat model. This specification describes best practices for negotiating confidential media with SIP, including a comprehensive protection solution that binds the media layer to SIP layer identities.
RFC8861 - Sending Multiple RTP Streams in a Single RTP Session: Grouping RTP Control Protocol (RTCP) Reception Statistics and Other Feedback
RTP allows multiple RTP streams to be sent in a single session but requires each Synchronization Source (SSRC) to send RTP Control Protocol (RTCP) reception quality reports for every other SSRC visible in the session. This causes the number of RTCP reception reports to grow with the number of SSRCs, rather than the number of endpoints. In many cases, most of these RTCP reception reports are unnecessary, since all SSRCs of an endpoint are normally co-located and see the same reception quality. This memo defines a Reporting Group extension to RTCP to reduce the reporting overhead in such scenarios.
RFC8860 - Sending Multiple Types of Media in a Single RTP Session
This document specifies how an RTP session can contain RTP streams with media from multiple media types such as audio, video, and text. This has been restricted by the RTP specifications (RFCs 3550 and 3551), and thus this document updates RFCs 3550 and 3551 to enable this behaviour for applications that satisfy the applicability for using multiple media types in a single RTP session.
RFC8859 - A Framework for Session Description Protocol (SDP) Attributes When Multiplexing
The purpose of this specification is to provide a framework for analyzing the multiplexing characteristics of Session Description Protocol (SDP) attributes when SDP is used to negotiate the usage of a single 5-tuple for sending and receiving media associated with multiple media descriptions.
RFC8858 - Indicating Exclusive Support of RTP and RTP Control Protocol (RTCP) Multiplexing Using the Session Description Protocol (SDP)
This document defines a new Session Description Protocol (SDP) media-level attribute, 'rtcp-mux-only', that can be used by an endpoint to indicate exclusive support of RTP and RTP Control Protocol (RTCP) multiplexing. The document also updates RFC 5761 by clarifying that an offerer can use a mechanism to indicate that it is not able to send and receive RTCP on separate ports.
RFC8857 - The WebSocket Protocol as a Transport for the Binary Floor Control Protocol (BFCP)
The WebSocket protocol enables two-way real-time communication between clients and servers. This document specifies the use of Binary Floor Control Protocol (BFCP) as a new WebSocket subprotocol enabling a reliable transport mechanism between BFCP entities in new scenarios.
RFC8856 - Session Description Protocol (SDP) Format for Binary Floor Control Protocol (BFCP) Streams
This document defines the Session Description Protocol (SDP) offer/answer procedures for negotiating and establishing Binary Floor Control Protocol (BFCP) streams.
RFC8855 - The Binary Floor Control Protocol (BFCP)
Floor control is a means to manage joint or exclusive access to shared resources in a (multiparty) conferencing environment. Thereby, floor control complements other functions -- such as conference and media session setup, conference policy manipulation, and media control -- that are realized by other protocols.