RFC3016: RTP Payload Format for MPEG-4 Audio/Visual Streams

Download in PDF format Download in text format

Obsoleted By:  RFC6416





Network Working Group                                         Y. Kikuchi
Request for Comments: 3016                                       Toshiba
Category: Standards Track                                      T. Nomura
                                                                     NEC
                                                             S. Fukunaga
                                                                     Oki
                                                               Y. Matsui
                                                              Matsushita
                                                               H. Kimata
                                                                     NTT
                                                           November 2000


           RTP Payload Format for MPEG-4 Audio/Visual Streams

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   This document describes Real-Time Transport Protocol (RTP) payload
   formats for carrying each of MPEG-4 Audio and MPEG-4 Visual
   bitstreams without using MPEG-4 Systems.  For the purpose of directly
   mapping MPEG-4 Audio/Visual bitstreams onto RTP packets, it provides
   specifications for the use of RTP header fields and also specifies
   fragmentation rules.  It also provides specifications for
   Multipurpose Internet Mail Extensions (MIME) type registrations and
   the use of Session Description Protocol (SDP).

1. Introduction

   The RTP payload formats described in this document specify how MPEG-4
   Audio [3][5] and MPEG-4 Visual streams [2][4] are to be fragmented
   and mapped directly onto RTP packets.

   These RTP payload formats enable transport of MPEG-4 Audio/Visual
   streams without using the synchronization and stream management
   functionality of MPEG-4 Systems [6].  Such RTP payload formats will
   be used in systems that have intrinsic stream management



Kikuchi, et al.             Standards Track                     [Page 1]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   functionality and thus require no such functionality from MPEG-4
   Systems.  H.323 terminals are an example of such systems, where
   MPEG-4 Audio/Visual streams are not managed by MPEG-4 Systems Object
   Descriptors but by H.245.  The streams are directly mapped onto RTP
   packets without using MPEG-4 Systems Sync Layer.  Other examples are
   SIP and RTSP where MIME and SDP are used.  MIME types and SDP usages
   of the RTP payload formats described in this document are defined to
   directly specify the attribute of Audio/Visual streams (e.g., media
   type, packetization format and codec configuration) without using
   MPEG-4 Systems.  The obvious benefit is that these MPEG-4
   Audio/Visual RTP payload formats can be handled in an unified way
   together with those formats defined for non-MPEG-4 codecs.  The
   disadvantage is that interoperability with environments using MPEG-4
   Systems may be difficult, other payload formats may be better suited
   to those applications.

   The semantics of RTP headers in such cases need to be clearly
   defined, including the association with MPEG-4 Audio/Visual data
   elements.  In addition, it is beneficial to define the fragmentation
   rules of RTP packets for MPEG-4 Video streams so as to enhance error
   resiliency by utilizing the error resilience tools provided inside
   the MPEG-4 Video stream.

1.1 MPEG-4 Visual RTP payload format

   MPEG-4 Visual is a visual coding standard with many new features:
   high coding efficiency; high error resiliency; multiple, arbitrary
   shape object-based coding; etc. [2].  It covers a wide range of
   bitrates from scores of Kbps to several Mbps.  It also covers a wide
   variety of networks, ranging from those guaranteed to be almost
   error-free to mobile networks with high error rates.

   With respect to the fragmentation rules for an MPEG-4 Visual
   bitstream defined in this document, since MPEG-4 Visual is used for a
   wide variety of networks, it is desirable not to apply too much
   restriction on fragmentation, and a fragmentation rule such as "a
   single video packet shall always be mapped on a single RTP packet"
   may be inappropriate.  On the other hand, careless, media unaware
   fragmentation may cause degradation in error resiliency and bandwidth
   efficiency.  The fragmentation rules described in this document are
   flexible but manage to define the minimum rules for preventing
   meaningless fragmentation while utilizing the error resilience
   functionalities of MPEG-4 Visual.

   The fragmentation rule recommends not to map more than one VOP in an
   RTP packet so that the RTP timestamp uniquely indicates the VOP time
   framing.  On the other hand, MPEG-4 video may generate VOPs of very
   small size, in cases with an empty VOP (vop_coded=0) containing only



Kikuchi, et al.             Standards Track                     [Page 2]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   VOP header or an arbitrary shaped VOP with a small number of coding
   blocks.  To reduce the overhead for such cases, the fragmentation
   rule permits concatenating multiple VOPs in an RTP packet.  (See
   fragmentation rule (4) in section 3.2 and marker bit and timestamp in
   section 3.1.)

   While the additional media specific RTP header defined for such video
   coding tools as H.261 or MPEG-1/2 is effective in helping to recover
   picture headers corrupted by packet losses, MPEG-4 Visual has already
   error resilience functionalities for recovering corrupt headers, and
   these can be used on RTP/IP networks as well as on other networks
   (H.223/mobile, MPEG-2/TS, etc.).  Therefore, no extra RTP header
   fields are defined in this MPEG-4 Visual RTP payload format.

1.2 MPEG-4 Audio RTP payload format

   MPEG-4 Audio is a new kind of audio standard that integrates many
   different types of audio coding tools.  Low-overhead MPEG-4 Audio
   Transport Multiplex (LATM) manages the sequences of audio data with
   relatively small overhead.  In audio-only applications, then, it is
   desirable for LATM-based MPEG-4 Audio bitstreams to be directly
   mapped onto the RTP packets without using MPEG-4 Systems.

   While LATM has several multiplexing features as follows;

   -  Carrying configuration information with audio data,
   -  Concatenation of multiple audio frames in one audio stream,
   -  Multiplexing multiple objects (programs),
   -  Multiplexing scalable layers,

   in RTP transmission there is no need for the last two features.
   Therefore, these two features MUST NOT be used in applications based
   on RTP packetization specified by this document.  Since LATM has been
   developed for only natural audio coding tools, i.e., not for
   synthesis tools, it seems difficult to transmit Structured Audio (SA)
   data and Text to Speech Interface (TTSI) data by LATM.  Therefore, SA
   data and TTSI data MUST NOT be transported by the RTP packetization
   in this document.

   For transmission of scalable streams, audio data of each layer SHOULD
   be packetized onto different RTP packets allowing for the different
   layers to be treated differently at the IP level, for example via
   some means of differentiated service.  On the other hand, all
   configuration data of the scalable streams are contained in one LATM
   configuration data "StreamMuxConfig" and every scalable layer shares
   the StreamMuxConfig.  The mapping between each layer and its
   configuration data is achieved by LATM header information attached to




Kikuchi, et al.             Standards Track                     [Page 3]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   the audio data.  In order to indicate the dependency information of
   the scalable streams, a restriction is applied to the dynamic
   assignment rule of payload type (PT) values (see section 4.2).

   For MPEG-4 Audio coding tools, as is true for other audio coders, if
   the payload is a single audio frame, packet loss will not impair the
   decodability of adjacent packets.  Therefore, the additional media
   specific header for recovering errors will not be required for MPEG-4
   Audio.  Existing RTP protection mechanisms, such as Generic Forward
   Error Correction (RFC 2733) and Redundant Audio Data (RFC 2198), MAY
   be applied to improve error resiliency.

2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [7].

3. RTP Packetization of MPEG-4 Visual bitstream

   This section specifies RTP packetization rules for MPEG-4 Visual
   content.  An MPEG-4 Visual bitstream is mapped directly onto RTP
   packets without the addition of extra header fields or any removal of
   Visual syntax elements.  The Combined Configuration/Elementary stream
   mode MUST be used so that configuration information will be carried
   to the same RTP port as the elementary stream.  (see 6.2.1 "Start
   codes" of ISO/IEC 14496-2 [2][9][4]) The configuration information
   MAY additionally be specified by some out-of-band means.  If needed
   for an H.323 terminal, H.245 codepoint
   "decoderConfigurationInformation" MUST be used for this purpose.  If
   needed by systems using MIME content type and SDP parameters, e.g.,
   SIP and RTSP, the optional parameter "config" MUST be used to specify
   the configuration information (see 5.1 and 5.2).

   When the short video header mode is used, the RTP payload format for
   H.263 SHOULD be used (the format defined in RFC 2429 is RECOMMENDED,
   but the RFC 2190 format MAY be used for compatibility with older
   implementations).













Kikuchi, et al.             Standards Track                     [Page 4]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X|  CC   |M|     PT      |       sequence number         | RTP
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           timestamp                           | Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           synchronization source (SSRC) identifier            |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|            contributing source (CSRC) identifiers             |
|                             ....                              |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|                                                               | RTP
|       MPEG-4 Visual stream (byte aligned)                     | Pay-
|                                                               | load
|                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               :...OPTIONAL RTP padding        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 1 - An RTP packet for MPEG-4 Visual stream

3.1 Use of RTP header fields for MPEG-4 Visual

   Payload Type (PT): The assignment of an RTP payload type for this new
   packet format is outside the scope of this document, and will not be
   specified here.  It is expected that the RTP profile for a particular
   class of applications will assign a payload type for this encoding,
   or if that is not done then a payload type in the dynamic range SHALL
   be chosen by means of an out of band signaling protocol (e.g., H.245,
   SIP, etc).

   Extension (X) bit: Defined by the RTP profile used.

   Sequence Number: Incremented by one for each RTP data packet sent,
   starting, for security reasons, with a random initial value.

   Marker (M) bit: The marker bit is set to one to indicate the last RTP
   packet (or only RTP packet) of a VOP.  When multiple VOPs are carried
   in the same RTP packet, the marker bit is set to one.

   Timestamp: The timestamp indicates the sampling instance of the VOP
   contained in the RTP packet.  A constant offset, which is random, is
   added for security reasons.

   -  When multiple VOPs are carried in the same RTP packet, the
      timestamp indicates the earliest of the VOP times within the VOPs
      carried in the RTP packet.  Timestamp information of the rest of




Kikuchi, et al.             Standards Track                     [Page 5]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


      the VOPs are derived from the timestamp fields in the VOP header
      (modulo_time_base and vop_time_increment).
   -  If the RTP packet contains only configuration information and/or
      Group_of_VideoObjectPlane() fields, the timestamp of the next VOP
      in the coding order is used.
   -  If the RTP packet contains only visual_object_sequence_end_code
      information, the timestamp of the immediately preceding VOP in the
      coding order is used.

   The resolution of the timestamp is set to its default value of 90kHz,
   unless specified by an out-of-band means (e.g., SDP parameter or MIME
   parameter as defined in section 5).

   Other header fields are used as described in RFC 1889 [8].

3.2 Fragmentation of MPEG-4 Visual bitstream

   A fragmented MPEG-4 Visual bitstream is mapped directly onto the RTP
   payload without any addition of extra header fields or any removal of
   Visual syntax elements.  The Combined Configuration/Elementary
   streams mode is used.  The following rules apply for the
   fragmentation.

   In the following, header means one of the following:

   -  Configuration information (Visual Object Sequence Header, Visual
      Object Header and Video Object Layer Header)
   -  visual_object_sequence_end_code
   -  The header of the entry point function for an elementary stream
      (Group_of_VideoObjectPlane() or the header of VideoObjectPlane(),
      video_plane_with_short_header(), MeshObject() or FaceObject())
   -  The video packet header (video_packet_header() excluding
      next_resync_marker())
   -  The header of gob_layer()
      See 6.2.1 "Start codes" of ISO/IEC 14496-2 [2][9][4] for the
      definition of the configuration information and the entry point
      functions.

   (1) Configuration information and Group_of_VideoObjectPlane() fields
   SHALL be placed at the beginning of the RTP payload (just after the
   RTP header) or just after the header of the syntactically upper layer
   function.

   (2) If one or more headers exist in the RTP payload, the RTP payload
   SHALL begin with the header of the syntactically highest function.
   Note: The visual_object_sequence_end_code is regarded as the lowest
   function.




Kikuchi, et al.             Standards Track                     [Page 6]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   (3) A header SHALL NOT be split into a plurality of RTP packets.

   (4) Different VOPs SHOULD be fragmented into different RTP packets so
   that one RTP packet consists of the data bytes associated with a
   unique VOP time instance (that is indicated in the timestamp field in
   the RTP packet header), with the exception that multiple consecutive
   VOPs MAY be carried within one RTP packet in the decoding order if
   the size of the VOPs is small.

   Note: When multiple VOPs are carried in one RTP payload, the
   timestamp of the VOPs after the first one may be calculated by the
   decoder.  This operation is necessary only for RTP packets in which
   the marker bit equals to one and the beginning of RTP payload
   corresponds to a start code. (See timestamp and marker bit in section
   3.1.)

   (5) It is RECOMMENDED that a single video packet is sent as a single
   RTP packet.  The size of a video packet SHOULD be adjusted in such a
   way that the resulting RTP packet is not larger than the path-MTU.
   Note: Rule (5) does not apply when the video packet is disabled by
   the coder configuration (by setting resync_marker_disable in the VOL
   header to 1), or in coding tools where the video packet is not
   supported.  In this case, a VOP MAY be split at arbitrary byte-
   positions.

   The video packet starts with the VOP header or the video packet
   header, followed by motion_shape_texture(), and ends with
   next_resync_marker() or next_start_code().

3.3 Examples of packetized MPEG-4 Visual bitstream

   Figure 2 shows examples of RTP packets generated based on the
   criteria described in 3.2

   (a) is an example of the first RTP packet or the random access point
   of an MPEG-4 Visual bitstream containing the configuration
   information.  According to criterion (1), the Visual Object Sequence
   Header(VS header) is placed at the beginning of the RTP payload,
   preceding the Visual Object Header and the Video Object Layer
   Header(VO header, VOL header).  Since the fragmentation rule defined
   in 3.2 guarantees that the configuration information, starting with
   visual_object_sequence_start_code, is always placed at the beginning
   of the RTP payload, RTP receivers can detect the random access point
   by checking if the first 32-bit field of the RTP payload is
   visual_object_sequence_start_code.






Kikuchi, et al.             Standards Track                     [Page 7]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   (b) is another example of the RTP packet containing the configuration
   information.  It differs from example (a) in that the RTP packet also
   contains a video packet in the VOP following the configuration
   information.  Since the length of the configuration information is
   relatively short (typically scores of bytes) and an RTP packet
   containing only the configuration information may thus increase the
   overhead, the configuration information and the immediately following
   GOV and/or (a part of) VOP can be packetized into a single RTP packet
   as in this example.

   (c) is an example of an RTP packet that contains
   Group_of_VideoObjectPlane(GOV).  Following criterion (1), the GOV is
   placed at the beginning of the RTP payload.  It would be a waste of
   RTP/IP header overhead to generate an RTP packet containing only a
   GOV whose length is 7 bytes.  Therefore, (a part of) the following
   VOP can be placed in the same RTP packet as shown in (c).

   (d) is an example of the case where one video packet is packetized
   into one RTP packet.  When the packet-loss rate of the underlying
   network is high, this kind of packetization is recommended.  Even
   when the RTP packet containing the VOP header is discarded by a
   packet loss, the other RTP packets can be decoded by using the
   HEC(Header Extension Code) information in the video packet header.
   No extra RTP header field is necessary.

   (e) is an example of the case where more than one video packet is
   packetized into one RTP packet.  This kind of packetization is
   effective to save the overhead of RTP/IP headers when the bit-rate of
   the underlying network is low.  However, it will decrease the
   packet-loss resiliency because multiple video packets are discarded
   by a single RTP packet loss.  The optimal number of video packets in
   an RTP packet and the length of the RTP packet can be determined
   considering the packet-loss rate and the bit-rate of the underlying
   network.

   (f) is an example of the case when the video packet is disabled by
   setting resync_marker_disable in the VOL header to 1.  In this case,
   a VOP may be split into a plurality of RTP packets at arbitrary
   byte-positions.  For example, it is possible to split a VOP into
   fixed-length packets.  This kind of coder configuration and RTP
   packet fragmentation may be used when the underlying network is
   guaranteed to be error-free.  On the other hand, it is not
   recommended to use it in error-prone environment since it provides
   only poor packet loss resiliency.

   Figure 3 shows examples of RTP packets prohibited by the criteria of
   3.2.




Kikuchi, et al.             Standards Track                     [Page 8]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   Fragmentation of a header into multiple RTP packets, as in (a), will
   not only increase the overhead of RTP/IP headers but also decrease
   the error resiliency.  Therefore, it is prohibited by the criterion
   (3).

   When concatenating more than one video packets into an RTP packet,
   VOP header or video_packet_header() shall not be placed in the middle
   of the RTP payload.  The packetization as in (b) is not allowed by
   criterion (2) due to the aspect of the error resiliency.  Comparing
   this example with Figure 2(d), although two video packets are mapped
   onto two RTP packets in both cases, the packet-loss resiliency is not
   identical.  Namely, if the second RTP packet is lost, both video
   packets 1 and 2 are lost in the case of Figure 3(b) whereas only
   video packet 2 is lost in the case of Figure 2(d).

    +------+------+------+------+
(a) | RTP  |  VS  |  VO  | VOL  |
    |header|header|header|header|
    +------+------+------+------+

    +------+------+------+------+------------+
(b) | RTP  |  VS  |  VO  | VOL  |Video Packet|
    |header|header|header|header|            |
    +------+------+------+------+------------+

    +------+-----+------------------+
(c) | RTP  | GOV |Video Object Plane|
    |header|     |                  |
    +------+-----+------------------+

    +------+------+------------+  +------+------+------------+
(d) | RTP  | VOP  |Video Packet|  | RTP  |  VP  |Video Packet|
    |header|header|    (1)     |  |header|header|    (2)     |
    +------+------+------------+  +------+------+------------+

    +------+------+------------+------+------------+------+------------+
(e) | RTP  |  VP  |Video Packet|  VP  |Video Packet|  VP  |Video Packet|
    |header|header|     (1)    |header|    (2)     |header|    (3)     |
    +------+------+------------+------+------------+------+------------+

    +------+------+------------+  +------+------------+
(f) | RTP  | VOP  |VOP fragment|  | RTP  |VOP fragment|
    |header|header|    (1)     |  |header|    (2)     | ___
    +------+------+------------+  +------+------------+

     Figure 2 - Examples of RTP packetized MPEG-4 Visual bitstream





Kikuchi, et al.             Standards Track                     [Page 9]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


    +------+-------------+  +------+------------+------------+
(a) | RTP  |First half of|  | RTP  |Last half of|Video Packet|
    |header|  VP header  |  |header|  VP header |            |
    +------+-------------+  +------+------------+------------+

    +------+------+----------+  +------+---------+------+------------+
(b) | RTP  | VOP  |First half|  | RTP  |Last half|  VP  |Video Packet|
    |header|header| of VP(1) |  |header| of VP(1)|header|    (2)     |
    +------+------+----------+  +------+---------+------+------------+

   Figure 3 - Examples of prohibited RTP packetization for MPEG-4 Visual
   bitstream

4. RTP Packetization of MPEG-4 Audio bitstream

   This section specifies RTP packetization rules for MPEG-4 Audio
   bitstreams.  MPEG-4 Audio streams MUST be formatted by LATM (Low-
   overhead MPEG-4 Audio Transport Multiplex) tool [5], and the LATM-
   based streams are then mapped onto RTP packets as described the three
   sections below.

4.1 RTP Packet Format

   LATM-based streams consist of a sequence of audioMuxElements that
   include one or more audio frames.  A complete audioMuxElement or a
   part of one SHALL be mapped directly onto an RTP payload without any
   removal of audioMuxElement syntax elements (see Figure 4).  The first
   byte of each audioMuxElement SHALL be located at the first payload
   location in an RTP packet.






















Kikuchi, et al.             Standards Track                    [Page 10]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X|  CC   |M|     PT      |       sequence number         |RTP
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           timestamp                           |Header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           synchronization source (SSRC) identifier            |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|            contributing source (CSRC) identifiers             |
|                             ....                              |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|                                                               |RTP
:                 audioMuxElement (byte aligned)                :Payload
|                                                               |
|                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               :...OPTIONAL RTP padding        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 4 - An RTP packet for MPEG-4 Audio

   In order to decode the audioMuxElement, the following
   muxConfigPresent information is required to be indicated by an out-
   of-band means.  When SDP is utilized for this indication, MIME
   parameter "cpresent" corresponds to the muxConfigPresent information
   (see section 5.3).

   muxConfigPresent: If this value is set to 1 (in-band mode), the
   audioMuxElement SHALL include an indication bit "useSameStreamMux"
   and MAY include the configuration information for audio compression
   "StreamMuxConfig".  The useSameStreamMux bit indicates whether the
   StreamMuxConfig element in the previous frame is applied in the
   current frame.  If the useSameStreamMux bit indicates to use the
   StreamMuxConfig from the previous frame, but if the previous frame
   has been lost, the current frame may not be decodable.  Therefore, in
   case of in-band mode, the StreamMuxConfig element SHOULD be
   transmitted repeatedly depending on the network condition.  On the
   other hand, if muxConfigPresent is set to 0 (out-band mode), the
   StreamMuxConfig element is required to be transmitted by an out-of-
   band means.  In case of SDP, MIME parameter "config" is utilized (see
   section 5.3).

4.2 Use of RTP Header Fields for MPEG-4 Audio

   Payload Type (PT): The assignment of an RTP payload type for this new
   packet format is outside the scope of this document, and will not be
   specified here.  It is expected that the RTP profile for a particular
   class of applications will assign a payload type for this encoding,



Kikuchi, et al.             Standards Track                    [Page 11]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   or if that is not done then a payload type in the dynamic range shall
   be chosen by means of an out of band signaling protocol (e.g., H.245,
   SIP, etc).  In the dynamic assignment of RTP payload types for
   scalable streams, a different value SHOULD be assigned to each layer.
   The assigned values SHOULD be in order of enhance layer dependency,
   where the base layer has the smallest value.

   Marker (M) bit: The marker bit indicates audioMuxElement boundaries.
   It is set to one to indicate that the RTP packet contains a complete
   audioMuxElement or the last fragment of an audioMuxElement.

   Timestamp: The timestamp indicates the sampling instance of the first
   audio frame contained in the RTP packet.  Timestamps are recommended
   to start at a random value for security reasons.

   Unless specified by an out-of-band means, the resolution of the
   timestamp is set to its default value of 90 kHz.

   Sequence Number: Incremented by one for each RTP packet sent,
   starting, for security reasons, with a random value.

   Other header fields are used as described in RFC 1889 [8].

4.3 Fragmentation of MPEG-4 Audio bitstream

   It is RECOMMENDED to put one audioMuxElement in each RTP packet.  If
   the size of an audioMuxElement can be kept small enough that the size
   of the RTP packet containing it does not exceed the size of the
   path-MTU, this will be no problem.  If it cannot, the audioMuxElement
   MAY be fragmented and spread across multiple packets.

5. MIME type registration for MPEG-4 Audio/Visual streams

   The following sections describe the MIME type registrations for
   MPEG-4 Audio/Visual streams.  MIME type registration and SDP usage
   for the MPEG-4 Visual stream are described in Sections 5.1 and 5.2,
   respectively, while MIME type registration and SDP usage for MPEG-4
   Audio stream are described in Sections 5.3 and 5.4, respectively.

5.1 MIME type registration for MPEG-4 Visual

   MIME media type name: video

   MIME subtype name: MP4V-ES

   Required parameters: none

   Optional parameters:



Kikuchi, et al.             Standards Track                    [Page 12]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


      rate: This parameter is used only for RTP transport.  It indicates
      the resolution of the timestamp field in the RTP header.  If this
      parameter is not specified, its default value of 90000 (90kHz) is
      used.

      profile-level-id: A decimal representation of MPEG-4 Visual
      Profile and Level indication value (profile_and_level_indication)
      defined in Table G-1 of ISO/IEC 14496-2 [2][4].  This parameter
      MAY be used in the capability exchange or session setup procedure
      to indicate MPEG-4 Visual Profile and Level combination of which
      the MPEG-4 Visual codec is capable.  If this parameter is not
      specified by the procedure, its default value of 1 (Simple
      Profile/Level 1) is used.

      config: This parameter SHALL be used to indicate the configuration
      of the corresponding MPEG-4 Visual bitstream.  It SHALL NOT be
      used to indicate the codec capability in the capability exchange
      procedure.  It is a hexadecimal representation of an octet string
      that expresses the MPEG-4 Visual configuration information, as
      defined in subclause 6.2.1 Start codes of ISO/IEC14496-2
      [2][4][9].  The configuration information is mapped onto the octet
      string in an MSB-first basis.  The first bit of the configuration
      information SHALL be located at the MSB of the first octet.  The
      configuration information indicated by this parameter SHALL be the
      same as the configuration information in the corresponding MPEG-4
      Visual stream, except for first_half_vbv_occupancy and
      latter_half_vbv_occupancy, if exist, which may vary in the
      repeated configuration information inside an MPEG-4 Visual stream
      (See 6.2.1 Start codes of ISO/IEC14496-2).

      Example usages for these parameters are:

        -  MPEG-4 Visual Simple Profile/Level 1:
            Content-type: video/mp4v-es; profile-level-id=1

        -  MPEG-4 Visual Core Profile/Level 2:
            Content-type: video/mp4v-es; profile-level-id=34

        -  MPEG-4 Visual Advanced Real Time Simple Profile/Level 1:
            Content-type: video/mp4v-es; profile-level-id=145

   Published specification:
      The specifications for MPEG-4 Visual streams are presented in
      ISO/IEC 14469-2 [2][4][9].  The RTP payload format is described in
      RFC 3016.






Kikuchi, et al.             Standards Track                    [Page 13]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   Encoding considerations:
      Video bitstreams MUST be generated according to MPEG-4 Visual
      specifications (ISO/IEC 14496-2).  A video bitstream is binary
      data and MUST be encoded for non-binary transport (for Email, the
      Base64 encoding is sufficient).  This type is also defined for
      transfer via RTP.  The RTP packets MUST be packetized according to
      the MPEG-4 Visual RTP payload format defined in RFC 3016.

   Security considerations:
      See section 6 of RFC 3016.

   Interoperability considerations:
      MPEG-4 Visual provides a large and rich set of tools for the
      coding of visual objects.  For effective implementation of the
      standard, subsets of the MPEG-4 Visual tool sets have been
      provided for use in specific applications.  These subsets, called
      'Profiles', limit the size of the tool set a decoder is required
      to implement.  In order to restrict computational complexity, one
      or more Levels are set for each Profile.  A Profile@Level
      combination allows:

      o a codec builder to implement only the subset of the standard he
      needs, while maintaining interworking with other MPEG-4 devices
      included in the same combination, and

      o checking whether MPEG-4 devices comply with the standard ('
      conformance testing').

      The visual stream SHALL be compliant with the MPEG-4 Visual
      Profile@Level specified by the parameter "profile-level-id".
      Interoperability between a sender and a receiver may be achieved
      by specifying the parameter "profile-level-id" in MIME content, or
      by arranging in the capability exchange/announcement procedure to
      set this parameter mutually to the same value.

   Applications which use this media type:
      Audio and visual streaming and conferencing tools, Internet
      messaging and Email applications.

   Additional information: none

   Person & email address to contact for further information:
      The authors of RFC 3016.  (See section 8.)

   Intended usage: COMMON

   Author/Change controller:
      The authors of RFC 3016.  (See section 8.)



Kikuchi, et al.             Standards Track                    [Page 14]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


5.2 SDP usage of MPEG-4 Visual

   The MIME media type video/MP4V-ES string is mapped to fields in the
   Session Description Protocol (SDP), RFC 2327, as follows:

   o  The MIME type (video) goes in SDP "m=" as the media name.

   o  The MIME subtype (MP4V-ES) goes in SDP "a=rtpmap" as the encoding
      name.

   o  The optional parameter "rate" goes in "a=rtpmap" as the clock
      rate.

   o  The optional parameter "profile-level-id" and "config" go in the
      "a=fmtp" line to indicate the coder capability and configuration,
      respectively.  These parameters are expressed as a MIME media type
      string, in the form of as a semicolon separated list of
      parameter=value pairs.

   The following are some examples of media representation in SDP:

Simple Profile/Level 1, rate=90000(90kHz), "profile-level-id" and
"config" are present in "a=fmtp" line:
  m=video 49170/2 RTP/AVP 98
  a=rtpmap:98 MP4V-ES/90000
  a=fmtp:98 profile-level-id=1;config=000001B001000001B509000001000000012
     0008440FA282C2090A21F

Core Profile/Level 2, rate=90000(90kHz), "profile-level-id" is present in
"a=fmtp" line:
  m=video 49170/2 RTP/AVP 98
  a=rtpmap:98 MP4V-ES/90000
  a=fmtp:98 profile-level-id=34

Advance Real Time Simple Profile/Level 1, rate=90000(90kHz),
"profile-level-id" is present in "a=fmtp" line:
  m=video 49170/2 RTP/AVP 98
  a=rtpmap:98 MP4V-ES/90000
  a=fmtp:98 profile-level-id=145

5.3 MIME type registration of MPEG-4 Audio

   MIME media type name: audio

   MIME subtype name: MP4A-LATM






Kikuchi, et al.             Standards Track                    [Page 15]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   Required parameters:
      rate: the rate parameter indicates the RTP time stamp clock rate.
      The default value is 90000.  Other rates MAY be specified only if
      they are set to the same value as the audio sampling rate (number
      of samples per second).

   Optional parameters:
      profile-level-id: a decimal representation of MPEG-4 Audio Profile
      Level indication value defined in ISO/IEC 14496-1 ([6] and its
      amendments).  This parameter indicates which MPEG-4 Audio tool
      subsets the decoder is capable of using.  If this parameter is not
      specified in the capability exchange or session setup procedure,
      its default value of 30 (Natural Audio Profile/Level 1) is used.

      object: a decimal representation of the MPEG-4 Audio Object Type
      value defined in ISO/IEC 14496-3 [5].  This parameter specifies
      the tool to be used by the coder.  It CAN be used to limit the
      capability within the specified "profile-level-id".

      bitrate: the data rate for the audio bit stream.

      cpresent: a boolean parameter indicates whether audio payload
      configuration data has been multiplexed into an RTP payload (see
      section 4.1).  A 0 indicates the configuration data has not been
      multiplexed into an RTP payload, a 1 indicates that it has.  The
      default if the parameter is omitted is 1.

      config: a hexadecimal representation of an octet string that
      expresses the audio payload configuration data "StreamMuxConfig",
      as defined in ISO/IEC 14496-3 [5] (see section 4.1).
      Configuration data is mapped onto the octet string in an MSB-first
      basis.  The first bit of the configuration data SHALL be located
      at the MSB of the first octet.  In the last octet, zero-padding
      bits, if necessary, SHALL follow the configuration data.

      ptime: RECOMMENDED duration of each packet in milliseconds.

   Published specification:
      Payload format specifications are described in this document.
      Encoding specifications are provided in ISO/IEC 14496-3 [3][5].

   Encoding considerations:
      This type is only defined for transfer via RTP.

   Security considerations:
      See Section 6 of RFC 3016.





Kikuchi, et al.             Standards Track                    [Page 16]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   Interoperability considerations:
      MPEG-4 Audio provides a large and rich set of tools for the coding
      of audio objects.  For effective implementation of the standard,
      subsets of the MPEG-4 Audio tool sets similar to those used in
      MPEG-4 Visual have been provided (see section 5.1).

      The audio stream SHALL be compliant with the MPEG-4 Audio
      Profile@Level specified by the parameter "profile-level-id".
      Interoperability between a sender and a receiver may be achieved
      by specifying the parameter "profile-level-id" in MIME content, or
      by arranging in the capability exchange procedure to set this
      parameter mutually to the same value.  Furthermore, the "object"
      parameter can be used to limit the capability within the specified
      Profile@Level in capability exchange.

   Applications which use this media type:
      Audio and video streaming and conferencing tools.

   Additional information: none

   Personal & email address to contact for further information:
      See Section 8 of RFC 3016.

   Intended usage: COMMON

   Author/Change controller:
      See Section 8 of RFC 3016.

5.4 SDP usage of MPEG-4 Audio

   The MIME media type audio/MP4A-LATM string is mapped to fields in the
   Session Description Protocol (SDP), RFC 2327, as follows:

   o  The MIME type (audio) goes in SDP "m=" as the media name.

   o  The MIME subtype (MP4A-LATM) goes in SDP "a=rtpmap" as the
      encoding name.

   o  The required parameter "rate" goes in "a=rtpmap" as the clock
      rate.

   o  The optional parameter "ptime" goes in SDP "a=ptime" attribute.

   o  The optional parameter "profile-level-id" goes in the "a=fmtp"
      line to indicate the coder capability.  The "object" parameter
      goes in the "a=fmtp" attribute.  The payload-format-specific
      parameters




Kikuchi, et al.             Standards Track                    [Page 17]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


      "bitrate", "cpresent" and "config" go in the "a=fmtp" line.  These
      parameters are expressed as a MIME media type string, in the form
      of as a semicolon separated list of parameter=value pairs.

   The following are some examples of the media representation in SDP:

For 6 kb/s CELP bitstreams (with an audio sampling rate of 8 kHz),
  m=audio 49230 RTP/AVP 96
  a=rtpmap:96 MP4A-LATM/8000
  a=fmtp:96 profile-level-id=9;object=8;cpresent=0;config=9128B1071070
  a=ptime:20

   For 64 kb/s AAC LC stereo bitstreams (with an audio sampling rate of
   24 kHz),

      m=audio 49230 RTP/AVP 96
      a=rtpmap:96 MP4A-LATM/24000
      a=fmtp:96 profile-level-id=1; bitrate=64000; cpresent=0;
      config=9122620000

   In the above two examples, audio configuration data is not
   multiplexed into the RTP payload and is described only in SDP.
   Furthermore, the "clock rate" is set to the audio sampling rate.

   If the clock rate has been set to its default value and it is
   necessary to obtain the audio sampling rate, this can be done by
   parsing the "config" parameter (see the following example).

      m=audio 49230 RTP/AVP 96
      a=rtpmap:96 MP4A-LATM/90000
      a=fmtp:96 object=8; cpresent=0; config=9128B1071070

   The following example shows that the audio configuration data appears
   in the RTP payload.

      m=audio 49230 RTP/AVP 96
      a=rtpmap:96 MP4A-LATM/90000
      a=fmtp:96 object=2; cpresent=1

6. Security Considerations

   RTP packets using the payload format defined in this specification
   are subject to the security considerations discussed in the RTP
   specification [8].  This implies that confidentiality of the media
   streams is achieved by encryption.  Because the data compression used
   with this payload format is applied end-to-end, encryption may be
   performed on the compressed data so there is no conflict between the
   two operations.



Kikuchi, et al.             Standards Track                    [Page 18]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


   The complete MPEG-4 system allows for transport of a wide range of
   content, including Java applets (MPEG-J) and scripts.  Since this
   payload format is restricted to audio and video streams, it is not
   possible to transport such active content in this format.

7. References

   1  Bradner, S., "The Internet Standards Process -- Revision 3", BCP
      9, RFC 2026, October 1996.

   2  ISO/IEC 14496-2:1999, "Information technology - Coding of audio-
      visual objects - Part2: Visual".

   3  ISO/IEC 14496-3:1999, "Information technology - Coding of audio-
      visual objects - Part3: Audio".

   4  ISO/IEC 14496-2:1999/Amd.1:2000, "Information technology - Coding
      of audio-visual objects - Part 2: Visual, Amendment 1: Visual
      extensions".

   5  ISO/IEC 14496-3:1999/Amd.1:2000, "Information technology - Coding
      of audio-visual objects - Part3: Audio, Amendment 1: Audio
      extensions".

   6  ISO/IEC 14496-1:1999, "Information technology - Coding of audio-
      visual objects - Part1: Systems".

   7  Bradner, S., "Key words for use in RFCs to Indicate Requirement
      Levels", BCP 14, RFC 2119, March 1997.

   8  Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson "RTP: A
      Transport Protocol for Real Time Applications", RFC 1889, January
      1996.

   9  ISO/IEC 14496-2:1999/Cor.1:2000, "Information technology - Coding
      of audio-visual objects - Part2: Visual, Technical corrigendum 1".















Kikuchi, et al.             Standards Track                    [Page 19]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


8. Authors' Addresses

   Yoshihiro Kikuchi
   Toshiba corporation
   1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan

   EMail: yoshihiro.kikuchi@toshiba.co.jp


   Yoshinori Matsui
   Matsushita Electric Industrial Co., LTD.
   1006, Kadoma, Kadoma-shi, Osaka, Japan

   EMail: matsui@drl.mei.co.jp


   Toshiyuki Nomura
   NEC Corporation
   4-1-1,Miyazaki,Miyamae-ku,Kawasaki,JAPAN

   EMail: t-nomura@ccm.cl.nec.co.jp


   Shigeru Fukunaga
   Oki Electric Industry Co., Ltd.
   1-2-27 Shiromi, Chuo-ku, Osaka 540-6025 Japan.

   EMail: fukunaga444@oki.co.jp


   Hideaki Kimata
   Nippon Telegraph and Telephone Corporation
   1-1, Hikari-no-oka, Yokosuka-shi, Kanagawa, Japan

   EMail: kimata@nttvdt.hil.ntt.co.jp
















Kikuchi, et al.             Standards Track                    [Page 20]

RFC 3016       RTP Payload Format for MPEG-4 Audio/Visual  November 2000


9. Full Copyright Statement

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Kikuchi, et al.             Standards Track                    [Page 21]