Internet Engineering Task Force (IETF) J. Guichard, Ed.
Request for Comments: 9491 Futurewei Technologies
Category: Standards Track J. Tantsura, Ed.
ISSN: 2070-1721 Nvidia
November 2023
Integration of the Network Service Header (NSH) and Segment Routing for
Service Function Chaining (SFC)
Abstract
This document describes the integration of the Network Service Header
(NSH) and Segment Routing (SR), as well as encapsulation details, to
efficiently support Service Function Chaining (SFC) while maintaining
separation of the service and transport planes as originally intended
by the SFC architecture.
Combining these technologies allows SR to be used for steering
packets between Service Function Forwarders (SFFs) along a given
Service Function Path (SFP), whereas the NSH is responsible for
maintaining the integrity of the service plane, the SFC instance
context, and any associated metadata.
This integration demonstrates that the NSH and SR can work
cooperatively and provide a network operator with the flexibility to
use whichever transport technology makes sense in specific areas of
their network infrastructure while still maintaining an end-to-end
service plane using the NSH.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9491.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
1.1. SFC Overview and Rationale
1.2. Requirements Language
2. SFC within Segment Routing Networks
3. NSH-Based SFC with SR-MPLS or the SRv6 Transport Tunnel
4. SR-Based SFC with the Integrated NSH Service Plane
5. Packet Processing for SR-Based SFC
5.1. SR-Based SFC (SR-MPLS) Packet Processing
5.2. SR-Based SFC (SRv6) Packet Processing
6. Encapsulation
6.1. NSH Using SR-MPLS Transport
6.2. NSH Using SRv6 Transport
7. Security Considerations
8. Backwards Compatibility
9. Caching Considerations
10. MTU Considerations
11. IANA Considerations
11.1. Protocol Number for the NSH
11.2. SRv6 Endpoint Behavior for the NSH
12. References
12.1. Normative References
12.2. Informative References
Contributors
Authors' Addresses
1. Introduction
1.1. SFC Overview and Rationale
The dynamic enforcement of a service-derived and adequate forwarding
policy for packets entering a network that supports advanced Service
Functions (SFs) has become a key challenge for network operators.
For instance, cascading SFs at the Third Generation Partnership
Project (3GPP) Gi interface (N6 interface in 5G architecture) has
shown limitations such as 1) redundant classification features that
must be supported by many SFs to execute their function; 2) some SFs
that receive traffic that they are not supposed to process (e.g., TCP
proxies receiving UDP traffic), which inevitably affects their
dimensioning and performance; and 3) an increased design complexity
related to the properly ordered invocation of several SFs.
In order to solve those problems and to decouple the service's
topology from the underlying physical network while allowing for
simplified service delivery, SFC techniques have been introduced
[RFC7665].
SFC techniques are meant to rationalize the service delivery logic
and reduce the resulting complexity while optimizing service
activation time cycles for operators that need more agile service
delivery procedures to better accommodate ever-demanding customer
requirements. SFC allows network operators to dynamically create
service planes that can be used by specific traffic flows. Each
service plane is realized by invoking and chaining the relevant
service functions in the right sequence. [RFC7498] provides an
overview of the overall SFC problem space, and [RFC7665] specifies an
SFC data plane architecture. The SFC architecture does not make
assumptions on how advanced features (e.g., load balancing, loose or
strict service paths) could be enabled within a domain. Various
deployment options are made available to operators with the SFC
architecture; this approach is fundamental to accommodate various and
heterogeneous deployment contexts.
Many approaches can be considered for encoding the information
required for SFC purposes (e.g., communicate a service chain pointer,
encode a list of loose/explicit paths, or disseminate a service chain
identifier together with a set of context information). Likewise,
many approaches can also be considered for the channel to be used to
carry SFC-specific information (e.g., define a new header, reuse
existing packet header fields, or define an IPv6 extension header).
Among all these approaches, the IETF created a transport-independent
SFC encapsulation scheme: NSH [RFC8300]. This design is pragmatic,
as it does not require replicating the same specification effort as a
function of underlying transport encapsulation. Moreover, this
design approach encourages consistent SFC-based service delivery in
networks enabling distinct transport protocols in various network
segments or even between SFFs vs. SF-SFF hops.
1.2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2. SFC within Segment Routing Networks
[RFC8300] specifies how to encapsulate the NSH directly within a
link-layer header. In this document, IANA has assigned IP protocol
number 145 for the NSH so that it can also be encapsulated directly
within an IP header. The procedures that follow make use of this
property.
As described in [RFC8402], SR leverages the source-routing technique.
Concretely, a node steers a packet through an SR policy instantiated
as an ordered list of instructions called segments. While initially
designed for policy-based source routing, SR also finds its
application in supporting SFC [SERVICE-PROGRAMMING].
The two SR data plane encapsulations, namely SR-MPLS [RFC8660] and
Segment Routing over IPv6 (SRv6) [RFC8754], can encode an SF as a
segment so that a service function chain can be specified as a
segment list. Nevertheless, and as discussed in [RFC7498], traffic
steering is only a subset of the issues that motivated the design of
the SFC architecture. Further considerations, such as simplifying
classification at intermediate SFs and allowing for coordinated
behaviors among SFs by means of supplying context information (a.k.a.
metadata), should be considered when designing an SFC data plane
solution.
While each scheme (i.e., NSH-based SFC and SR-based SFC) can work
independently, this document describes how the two can be used
together in concert and to complement each other through two
representative application scenarios. Both application scenarios may
be supported using either SR-MPLS or SRv6:
NSH-based SFC with the SR-based transport plane:
In this scenario, SR-MPLS or SRv6 provides the transport
encapsulation between SFFs, while the NSH is used to convey and
trigger SFC policies.
SR-based SFC with the integrated NSH service plane:
In this scenario, each service hop of the service function chain
is represented as a segment of the SR segment list. SR is thus
responsible for steering traffic through the necessary SFFs as
part of the segment routing path, while the NSH is responsible for
maintaining the service plane and holding the SFC instance context
(including associated metadata).
Of course, it is possible to combine both of these two scenarios to
support specific deployment requirements and use cases.
A classifier MUST use one NSH Service Path Identifier (SPI) for each
SR policy so that different traffic flows can use the same NSH
Service Function Path (SFP) and different SR policies can coexist on
the same SFP without conflict during SFF processing.
3. NSH-Based SFC with SR-MPLS or the SRv6 Transport Tunnel
Because of the transport-independent nature of NSH-based service
function chains, it is expected that the NSH has broad applicability
across different network domains (e.g., access, core). By way of
illustration, the various SFs involved in a service function chain
may be available in a single data center or spread throughout
multiple locations (e.g., data centers, different Points of Presence
(POPs)), depending upon the network operator preference and/or
availability of service resources. Regardless of where the SFs are
deployed, it is necessary to provide traffic steering through a set
of SFFs, and when NSH and SR are integrated, this is provided by SR-
MPLS or SRv6.
The following three figures provide an example of an SFC-established
flow F that has SF instances located in different data centers, DC1
and DC2. For the purpose of illustration, let the SFC's NSH SPI be
100 and the initial Service Index (SI) be 255.
Referring to Figure 1, packets of flow F in DC1 are classified into
an NSH-based service function chain, encapsulated after
classification as <Inner Pkt><NSH: SPI 100, SI 255><Outer-transport>,
and forwarded to SFF1 (which is the first SFF hop for this service
function chain).
After removing the outer transport encapsulation, SFF1 uses the SPI
and SI carried within the NSH encapsulation to determine that it
should forward the packet to SF1. SF1 applies its service,
decrements the SI by 1, and returns the packet to SFF1. Therefore,
SFF1 has <SPI 100, SI 254> when the packet comes back from SF1. SFF1
does a lookup on <SPI 100, SI 254>, which results in <next-hop:
DC1-GW1> and forwards the packet to DC1-GW1.
+--------------------------- DC1 ----------------------------+
| +-----+ |
| | SF1 | |
| +--+--+ |
| | |
| | |
| +------------+ | +------------+ |
| | N(100,255) | | | N(100,254) | |
| +------------+ | +------------+ |
| | F:Inner Pkt| | | F:Inner Pkt| |
| +------------+ ^ | | +------------+ |
| (2) | | | (3) |
| | | v |
| (1) | (4) |
|+------------+ ----> +--+---+ ----> +---------+ |
|| | NSH | | NSH | | |
|| Classifier +------------+ SFF1 +--------------+ DC1-GW1 + |
|| | | | | | |
|+------------+ +------+ +---------+ |
| |
| +------------+ +------------+ |
| | N(100,255) | | N(100,254) | |
| +------------+ +------------+ |
| | F:Inner Pkt| | F:Inner Pkt| |
| +------------+ +------------+ |
| |
+------------------------------------------------------------+
Figure 1: SR for Inter-DC SFC - Part 1
Referring now to Figure 2, DC1-GW1 performs a lookup using the
information conveyed in the NSH, which results in <next-hop: DC2-GW1,
encapsulation: SR>. The SR encapsulation, which may be SR-MPLS or
SRv6, has the SR segment list to forward the packet across the inter-
DC network to DC2.
+----------- Inter DC ----------------+
(4) | (5) |
+------+ ----> | +---------+ ----> +---------+ |
| | NSH | | | SR | | |
+ SFF1 +----------|-+ DC1-GW1 +-------------+ DC2-GW1 + |
| | | | | | | |
+------+ | +---------+ +---------+ |
| |
| +------------+ |
| | S(DC2-GW1) | |
| +------------+ |
| | N(100,254) | |
| +------------+ |
| | F:Inner Pkt| |
| +------------+ |
+-------------------------------------+
Figure 2: SR for Inter-DC SFC - Part 2
When the packet arrives at DC2, as shown in Figure 3, the SR
encapsulation is removed, and DC2-GW1 performs a lookup on the NSH,
which results in next hop: SFF2. When SFF2 receives the packet, it
performs a lookup on <NSH: SPI 100, SI 254> and determines to forward
the packet to SF2. SF2 applies its service, decrements the SI by 1,
and returns the packet to SFF2. Therefore, SFF2 has <NSH: SPI 100,
SI 253> when the packet comes back from SF2. SFF2 does a lookup on
<NSH: SPI 100, SI 253>, which results in the end of the service
function chain.
+------------------------ DC2 ----------------------+
| +-----+ |
| | SF2 | |
| +--+--+ |
| | |
| | |
| +------------+ | +------------+ |
| | N(100,254) | | | N(100,253) | |
| +------------+ | +------------+ |
| | F:Inner Pkt| | | F:Inner Pkt| |
| +------------+ ^ | | +------------+ |
| (7) | | | (8) |
| | | v |
(5) | (6) | (9) |
+---------+ ---> | +----------+ ----> +--+---+ ----> |
| | SR | | | NSH | | IP |
+ DC1-GW1 +--------|-+ DC2-GW1 +------------+ SFF2 | |
| | | | | | | |
+---------+ | +----------+ +------+ |
| |
| +------------+ +------------+ |
| | N(100,254) | | F:Inner Pkt| |
| +------------+ +------------+ |
| | F:Inner Pkt| |
| +------------+ |
+---------------------------------------------------+
Figure 3: SR for Inter-DC SFC - Part 3
The benefits of this scheme are listed hereafter:
* The network operator is able to take advantage of the transport-
independent nature of the NSH encapsulation while the service is
provisioned end-to-end.
* The network operator is able to take advantage of the traffic-
steering (traffic-engineering) capability of SR where appropriate.
* Clear responsibility division and scope between the NSH and SR.
Note that this scenario is applicable to any case where multiple
segments of a service function chain are distributed across multiple
domains or where traffic-engineered paths are necessary between SFFs
(strict forwarding paths, for example). Further, note that the above
example can also be implemented using end-to-end segment routing
between SFF1 and SFF2. (As such, DC-GW1 and DC-GW2 are forwarding
the packets based on segment routing instructions and are not looking
at the NSH header for forwarding.)
4. SR-Based SFC with the Integrated NSH Service Plane
In this scenario, we assume that the SFs are NSH-aware; therefore, it
should not be necessary to implement an SFC proxy to achieve SFC.
The operation relies upon SR-MPLS or SRv6 to perform SFF-SFF
transport and the NSH to provide the service plane between SFs,
thereby maintaining SFC context (e.g., the service plane path
referenced by the SPI) and any associated metadata.
When a service function chain is established, a packet associated
with that chain will first carry an NSH that will be used to maintain
the end-to-end service plane through use of the SFC context. The SFC
context is used by an SFF to determine the SR segment list for
forwarding the packet to the next-hop SFFs. The packet is then
encapsulated using the SR header and forwarded in the SR domain
following normal SR operations.
When a packet has to be forwarded to an SF attached to an SFF, the
SFF performs a lookup on the segment identifier (SID) associated with
the SF. In the case of SR-MPLS, this will be a Prefix-SID [RFC8402].
In the case of SRv6, the behavior described within this document is
assigned the name END.NSH, and Section 11.2 describes the allocation
of the code point by IANA. The result of this lookup allows the SFF
to retrieve the next-hop context between the SFF and SF (e.g., the
destination Media Access Control (MAC) address in case Ethernet
encapsulation is used between the SFF and SF). In addition, the SFF
strips the SR information from the packet, updates the SR
information, and saves it to a cache indexed by the NSH Service Path
Identifier (SPI) and the Service Index (SI) decremented by 1. This
saved SR information is used to encapsulate and forward the packet(s)
coming back from the SF.
The behavior of remembering the SR segment list occurs at the end of
the regularly defined logic. The behavior of reattaching the segment
list occurs before the SR process of forwarding the packet to the
next entry in the segment list. Both behaviors are further detailed
in Section 5.
When the SF receives the packet, it processes it as usual. When the
SF is co-resident with a classifier, the already-processed packet may
be reclassified. The SF sends the packet back to the SFF. Once the
SFF receives this packet, it extracts the SR information using the
NSH SPI and SI as the index into the cache. The SFF then pushes the
retrieved SR header on top of the NSH header and forwards the packet
to the next segment in the segment list. The lookup in the SFF cache
might fail if reclassification at the SF changed the NSH SPI and/or
SI to values that do not exist in the SFF cache. In such a case, the
SFF must generate an error and drop the packet.
Figure 4 illustrates an example of this scenario.
+-----+ +-----+
| SF1 | | SF2 |
+--+--+ +--+--+
| |
| |
+-----------+ | +-----------+ +-----------+ | +-----------+
|N(100,255) | | |N(100,254) | |N(100,254) | | |N(100,253) |
+-----------+ | +-----------+ +-----------+ | +-----------+
|F:Inner Pkt| | |F:Inner Pkt| |F:Inner Pkt| | |F:Inner Pkt|
+-----------+ | +-----------+ +-----------+ | +-----------+
(2) ^ | (3) | (5) ^ | (6) |
| | | | | |
| | | | | |
(1) | | v (4) | | v (7)
+------------+ ---> +-+----+ ----> +---+--+ -->
| | NSHoverSR | | NSHoverSR | | IP
| Classifier +-----------+ SFF1 +---------------------+ SFF2 |
| | | | | |
+------------+ +------+ +------+
+------------+ +------------+ +------------+
| S(SF1) | | S(SF2) | | F:Inner Pkt|
+------------+ +------------+ +------------+
| S(SFF2) | | N(100,254) |
+------------+ +------------+
| S(SF2) | | F:Inner Pkt|
+------------+ +------------+
| N(100,255) |
+------------+
| F:Inner Pkt|
+------------+
Figure 4: NSH over SR for SFC
The benefits of this scheme include the following:
* It is economically sound for SF vendors to only support one
unified SFC solution. The SF is unaware of the SR.
* It simplifies the SFF (i.e., the SR router) by nullifying the
needs for reclassification and SR proxy.
* SR is also used for forwarding purposes, including between SFFs.
* It takes advantage of SR to eliminate the NSH forwarding state in
SFFs. This applies each time strict or loose SFPs are in use.
* It requires no interworking, as would be the case if SR-MPLS-based
SFC and NSH-based SFC were deployed as independent mechanisms in
different parts of the network.
5. Packet Processing for SR-Based SFC
This section describes the End.NSH behavior (SRv6), Prefix-SID
behavior (SR-MPLS), and NSH processing logic.
5.1. SR-Based SFC (SR-MPLS) Packet Processing
When an SFF receives a packet destined to S and S is a local Prefix-
SID associated with an SF, the SFF strips the SR segment list (label
stack) from the packet, updates the SR information, and saves it to a
cache indexed by the NSH Service Path Identifier (SPI) and the
Service Index (SI) decremented by 1. This saved SR information is
used to re-encapsulate and forward the packet(s) coming back from the
SF.
5.2. SR-Based SFC (SRv6) Packet Processing
This section describes the End.NSH behavior and NSH processing logic
for SRv6. The pseudocode is shown below.
When N receives a packet destined to S and S is a local End.NSH SID,
the processing is the same as that specified by [RFC8754],
Section 4.3.1.1, up through line S15.
After S15, if S is a local End.NSH SID, then:
S15.1. Remove and store IPv6 and SRH headers in local cache
indexed by <NSH: service-path-id, service-index -1>
S15.2. Submit the packet to the NSH FIB lookup and transmit
to the destination associated with <NSH:
service-path-id, service-index>
| Note: The End.NSH behavior interrupts the normal SRH packet
| processing, as described in [RFC8754], Section 4.3.1.1, which
| does not continue to S16 at this time.
When a packet is returned to the SFF from the SF, reattach the cached
IPv6 and SRH headers based on the <NSH: service-path-id, service-
index> from the NSH header. Then, resume processing from [RFC8754],
Section 4.3.1.1 with line S16.
6. Encapsulation
6.1. NSH Using SR-MPLS Transport
SR-MPLS instantiates segment identifiers (SIDs) as MPLS labels;
therefore, the segment routing header is a stack of MPLS labels.
When carrying an NSH within an SR-MPLS transport, the full
encapsulation headers are as illustrated in Figure 5.
+------------------+
~ SR-MPLS Labels ~
+------------------+
| NSH Base Hdr |
+------------------+
| Service Path Hdr |
+------------------+
~ Metadata ~
+------------------+
Figure 5: NSH Using SR-MPLS Transport
As described in [RFC8402], "[t]he IGP signaling extension for IGP-
Prefix segment includes a flag to indicate whether directly connected
neighbors of the node on which the prefix is attached should perform
the NEXT operation or the CONTINUE operation when processing the
SID." When an NSH is carried beneath SR-MPLS, it is necessary to
terminate the NSH-based SFC at the tail-end node of the SR-MPLS label
stack. This can be achieved using either the NEXT or CONTINUE
operation.
If the NEXT operation is to be used, then at the end of the SR-MPLS
path, it is necessary to provide an indication to the tail end that
the NSH follows the SR-MPLS label stack as described by [RFC8596].
If the CONTINUE operation is to be used, this is the equivalent of
MPLS Ultimate Hop Popping (UHP); therefore, it is necessary to ensure
that the penultimate hop node does not pop the top label of the SR-
MPLS label stack and thereby expose the NSH to the wrong SFF. This
is realized by setting the No Penultimate Hop Popping (No-PHP) flag
in Prefix-SID Sub-TLV [RFC8667] [RFC8665]. It is RECOMMENDED that a
specific Prefix-SID be allocated at each node for use by the SFC
application for this purpose.
6.2. NSH Using SRv6 Transport
When carrying a NSH within an SRv6 transport, the full encapsulation
is as illustrated in Figure 6.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Last Entry | Flags | Tag | S
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ e
| | g
| Segment List[0] (128-bit IPv6 address) | m
| | e
| | n
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ t
| |
| | R
~ ... ~ o
| | u
| | t
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ i
| | n
| Segment List[n] (128-bit IPv6 address) | g
| |
| | S
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R
// // H
// Optional Type Length Value objects (variable) //
// //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ver|O|U| TTL | Length |U|U|U|U|MD Type| Next Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ N
| Service Path Identifier | Service Index | S
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ H
| |
~ Variable-Length Context Headers (opt.) ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: NSH Using SRv6 Transport
Encapsulation of the NSH following SRv6 is indicated by the IP
protocol number for the NSH in the Next Header of the SRH.
7. Security Considerations
Generic SFC-related security considerations are discussed in
[RFC7665].
NSH-specific security considerations are discussed in [RFC8300].
Generic security considerations related to segment routing are
discussed in Section 7 of [RFC8754] and Section 5 of [RFC8663].
8. Backwards Compatibility
For SRv6/IPv6, if a processing node does not recognize the NSH, it
should follow the procedures described in Section 4 of [RFC8200].
For SR-MPLS, if a processing node does not recognize the NSH, it
should follow the procedures laid out in Section 3.18 of [RFC3031].
9. Caching Considerations
The cache mechanism must remove cached entries at an appropriate time
determined by the implementation. Further, an implementation MAY
allow network operators to set the said time value. In the case
where a packet arriving from an SF does not have a matching cached
entry, the SFF SHOULD log this event and MUST drop the packet.
10. MTU Considerations
Aligned with Section 5 of [RFC8300] and Section 5.3 of [RFC8754], it
is RECOMMENDED for network operators to increase the underlying MTU
so that SR/NSH traffic is forwarded within an SR domain without
fragmentation.
11. IANA Considerations
11.1. Protocol Number for the NSH
IANA has assigned protocol number 145 for the NSH [RFC8300] in the
"Assigned Internet Protocol Numbers" registry
<https://www.iana.org/assignments/protocol-numbers/>.
+=========+=========+================+================+===========+
| Decimal | Keyword | Protocol | IPv6 Extension | Reference |
| | | | Header | |
+=========+=========+================+================+===========+
| 145 | NSH | Network | N | RFC 9491 |
| | | Service Header | | |
+---------+---------+----------------+----------------+-----------+
Table 1: Assigned Internet Protocol Numbers Registry
11.2. SRv6 Endpoint Behavior for the NSH
IANA has allocated the following value in the "SRv6 Endpoint
Behaviors" subregistry under the "Segment Routing" registry:
+=======+========+===================+===========+============+
| Value | Hex | Endpoint Behavior | Reference | Change |
| | | | | Controller |
+=======+========+===================+===========+============+
| 84 | 0x0054 | End.NSH - NSH | RFC 9491 | IETF |
| | | Segment | | |
+-------+--------+-------------------+-----------+------------+
Table 2: SRv6 Endpoint Behaviors Subregistry
12. References
12.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
Label Switching Architecture", RFC 3031,
DOI 10.17487/RFC3031, January 2001,
<https://www.rfc-editor.org/info/rfc3031>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", STD 86, RFC 8200,
DOI 10.17487/RFC8200, July 2017,
<https://www.rfc-editor.org/info/rfc8200>.
[RFC8300] Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
"Network Service Header (NSH)", RFC 8300,
DOI 10.17487/RFC8300, January 2018,
<https://www.rfc-editor.org/info/rfc8300>.
[RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
Decraene, B., Litkowski, S., and R. Shakir, "Segment
Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
July 2018, <https://www.rfc-editor.org/info/rfc8402>.
[RFC8660] Bashandy, A., Ed., Filsfils, C., Ed., Previdi, S.,
Decraene, B., Litkowski, S., and R. Shakir, "Segment
Routing with the MPLS Data Plane", RFC 8660,
DOI 10.17487/RFC8660, December 2019,
<https://www.rfc-editor.org/info/rfc8660>.
[RFC8663] Xu, X., Bryant, S., Farrel, A., Hassan, S., Henderickx,
W., and Z. Li, "MPLS Segment Routing over IP", RFC 8663,
DOI 10.17487/RFC8663, December 2019,
<https://www.rfc-editor.org/info/rfc8663>.
[RFC8665] Psenak, P., Ed., Previdi, S., Ed., Filsfils, C., Gredler,
H., Shakir, R., Henderickx, W., and J. Tantsura, "OSPF
Extensions for Segment Routing", RFC 8665,
DOI 10.17487/RFC8665, December 2019,
<https://www.rfc-editor.org/info/rfc8665>.
[RFC8667] Previdi, S., Ed., Ginsberg, L., Ed., Filsfils, C.,
Bashandy, A., Gredler, H., and B. Decraene, "IS-IS
Extensions for Segment Routing", RFC 8667,
DOI 10.17487/RFC8667, December 2019,
<https://www.rfc-editor.org/info/rfc8667>.
[RFC8754] Filsfils, C., Ed., Dukes, D., Ed., Previdi, S., Leddy, J.,
Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
(SRH)", RFC 8754, DOI 10.17487/RFC8754, March 2020,
<https://www.rfc-editor.org/info/rfc8754>.
12.2. Informative References
[RFC7498] Quinn, P., Ed. and T. Nadeau, Ed., "Problem Statement for
Service Function Chaining", RFC 7498,
DOI 10.17487/RFC7498, April 2015,
<https://www.rfc-editor.org/info/rfc7498>.
[RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
Chaining (SFC) Architecture", RFC 7665,
DOI 10.17487/RFC7665, October 2015,
<https://www.rfc-editor.org/info/rfc7665>.
[RFC8596] Malis, A., Bryant, S., Halpern, J., and W. Henderickx,
"MPLS Transport Encapsulation for the Service Function
Chaining (SFC) Network Service Header (NSH)", RFC 8596,
DOI 10.17487/RFC8596, June 2019,
<https://www.rfc-editor.org/info/rfc8596>.
[SERVICE-PROGRAMMING]
Clad, F., Ed., Xu, X., Ed., Filsfils, C., Bernier, D., Li,
C., Decraene, B., Ma, S., Yadlapalli, C., Henderickx, W.,
and S. Salsano, "Service Programming with Segment
Routing", Work in Progress, Internet-Draft, draft-ietf-
spring-sr-service-programming-08, 21 August 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-spring-
sr-service-programming-08>.
Contributors
The following coauthors provided valuable inputs and text
contributions to this document.
Mohamed Boucadair
Orange
Email: mohamed.boucadair@orange.com
Joel Halpern
Ericsson
Email: joel.halpern@ericsson.com
Syed Hassan
Cisco System, inc.
Email: shassan@cisco.com
Wim Henderickx
Nokia
Email: wim.henderickx@nokia.com
Haoyu Song
Futurewei Technologies
Email: haoyu.song@futurewei.com
Authors' Addresses
James N Guichard (editor)
Futurewei Technologies
2330 Central Expressway
Santa Clara, CA
United States of America
Email: james.n.guichard@futurewei.com
Jeff Tantsura (editor)
Nvidia
United States of America
Email: jefftant.ietf@gmail.com