RFC Abstracts
RFC8379 - OSPF Graceful Link Shutdown
When a link is being prepared to be taken out of service, the traffic needs to be diverted from both ends of the link. Increasing the metric to the highest value on one side of the link is not sufficient to divert the traffic flowing in the other direction.
RFC8378 - Signal-Free Locator/ID Separation Protocol (LISP) Multicast
When multicast sources and receivers are active at Locator/ID Separation Protocol (LISP) sites, the core network is required to use native multicast so packets can be delivered from sources to group members. When multicast is not available to connect the multicast sites together, a signal-free mechanism can be used to allow traffic to flow between sites. The mechanism described in this document uses unicast replication and encapsulation over the core network for the data plane and uses the LISP mapping database system so encapsulators at the source LISP multicast site can find decapsulators at the receiver LISP multicast sites.
RFC8377 - Transparent Interconnection of Lots of Links (TRILL): Multi-Topology
This document specifies extensions to the IETF TRILL (Transparent Interconnection of Lots of Links) protocol to support multi-topology routing of unicast and multi-destination traffic based on IS-IS (Intermediate System to Intermediate System) multi-topology specified in RFC 5120. This document updates RFCs 6325 and 7177.
RFC8376 - Low-Power Wide Area Network (LPWAN) Overview
Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation. This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.
RFC8375 - Special-Use Domain 'home.arpa.'
This document specifies the behavior that is expected from the Domain Name System with regard to DNS queries for names ending with '.home.arpa.' and designates this domain as a special-use domain name. 'home.arpa.' is designated for non-unique use in residential home networks. The Home Networking Control Protocol (HNCP) is updated to use the 'home.arpa.' domain instead of '.home'.
RFC8374 - BGPsec Design Choices and Summary of Supporting Discussions
This document captures the design rationale of the initial draft version of what became RFC 8205 (the BGPsec protocol specification). The designers needed to balance many competing factors, and this document lists the decisions that were made in favor of or against each design choice. This document also presents brief summaries of the arguments that aided the decision process. Where appropriate, this document also provides brief notes on design decisions that changed as the specification was reviewed and updated by the IETF SIDR Working Group and that resulted in RFC 8205. These notes highlight the differences and provide pointers to details and rationale regarding those design changes.
RFC8373 - Negotiating Human Language in Real-Time Communications
Users have various human (i.e., natural) language needs, abilities, and preferences regarding spoken, written, and signed languages. This document defines new Session Description Protocol (SDP) media- level attributes so that when establishing interactive communication sessions ("calls"), it is possible to negotiate (i.e., communicate and match) the caller's language and media needs with the capabilities of the called party. This is especially important for emergency calls, because it allows for a call to be handled by a call taker capable of communicating with the user or for a translator or relay operator to be bridged into the call during setup. However, this also applies to non-emergency calls (for example, calls to a company call center).
RFC8372 - MPLS Flow Identification Considerations
This document discusses aspects to consider when developing a solution for MPLS flow identification. The key application that needs this solution is in-band performance monitoring of MPLS flows when MPLS is used to encapsulate user data packets.
RFC8371 - Mobile Node Identifier Types for MIPv6
This document defines additional identifier type numbers for use with the mobile node identifier option for Mobile IPv6 (MIPv6) as defined by RFC 4283.
RFC8370 - Techniques to Improve the Scalability of RSVP-TE Deployments
Networks that utilize RSVP-TE LSPs are encountering implementations that have a limited ability to support the growth in the number of LSPs deployed.
RFC8369 - Internationalizing IPv6 Using 128-Bit Unicode
It is clear that Unicode will eventually exhaust its supply of code points, and more will be needed. Assuming ISO and the Unicode Consortium follow the practices of the IETF, the next Unicode code point size will be 128 bits. This document describes how this future 128-bit Unicode can be leveraged to improve IPv6 adoption and finally bring internationalization support to IPv6.
RFC8368 - Using an Autonomic Control Plane for Stable Connectivity of Network Operations, Administration, and Maintenance (OAM)
Operations, Administration, and Maintenance (OAM), as per BCP 161, for data networks is often subject to the problem of circular dependencies when relying on connectivity provided by the network to be managed for the OAM purposes.
RFC8367 - Wrongful Termination of Internet Protocol (IP) Packets
Routers and middleboxes terminate packets for various reasons. In some cases, these packets are wrongfully terminated. This memo describes some of the most common scenarios of wrongful termination of Internet Protocol (IP) packets and presents recommendations for mitigating them.
RFC8366 - A Voucher Artifact for Bootstrapping Protocols
This document defines a strategy to securely assign a pledge to an owner using an artifact signed, directly or indirectly, by the pledge's manufacturer. This artifact is known as a "voucher".
RFC8365 - A Network Virtualization Overlay Solution Using Ethernet VPN (EVPN)
This document specifies how Ethernet VPN (EVPN) can be used as a Network Virtualization Overlay (NVO) solution and explores the various tunnel encapsulation options over IP and their impact on the EVPN control plane and procedures. In particular, the following encapsulation options are analyzed: Virtual Extensible LAN (VXLAN), Network Virtualization using Generic Routing Encapsulation (NVGRE), and MPLS over GRE. This specification is also applicable to Generic Network Virtualization Encapsulation (GENEVE); however, some incremental work is required, which will be covered in a separate document. This document also specifies new multihoming procedures for split-horizon filtering and mass withdrawal. It also specifies EVPN route constructions for VXLAN/NVGRE encapsulations and Autonomous System Border Router (ASBR) procedures for multihoming of Network Virtualization Edge (NVE) devices.
RFC8364 - PIM Flooding Mechanism (PFM) and Source Discovery (SD)
Protocol Independent Multicast - Sparse Mode (PIM-SM) uses a Rendezvous Point (RP) and shared trees to forward multicast packets from new sources. Once Last-Hop Routers (LHRs) receive packets from a new source, they may join the Shortest Path Tree (SPT) for the source for optimal forwarding. This document defines a new mechanism that provides a way to support PIM-SM without the need for PIM registers, RPs, or shared trees. Multicast source information is flooded throughout the multicast domain using a new generic PIM Flooding Mechanism (PFM). This allows LHRs to learn about new sources without receiving initial data packets.
RFC8363 - GMPLS OSPF-TE Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks
The International Telecommunication Union Telecommunication standardization sector (ITU-T) has extended its Recommendations G.694.1 and G.872 to include a new Dense Wavelength Division Multiplexing (DWDM) grid by defining channel spacings, a set of nominal central frequencies, and the concept of the "frequency slot". Corresponding techniques for data-plane connections are known as "flexi-grid".
RFC8362 - OSPFv3 Link State Advertisement (LSA) Extensibility
OSPFv3 requires functional extension beyond what can readily be done with the fixed-format Link State Advertisement (LSA) as described in RFC 5340. Without LSA extension, attributes associated with OSPFv3 links and advertised IPv6 prefixes must be advertised in separate LSAs and correlated to the fixed-format LSAs. This document extends the LSA format by encoding the existing OSPFv3 LSA information in Type-Length-Value (TLV) tuples and allowing advertisement of additional information with additional TLVs. Backward-compatibility mechanisms are also described.
RFC8361 - Transparent Interconnection of Lots of Links (TRILL): Centralized Replication for Active-Active Broadcast, Unknown Unicast, and Multicast (BUM) Traffic
In Transparent Interconnection of Lots of Links (TRILL) active-active access, a Reverse Path Forwarding (RPF) check failure issue may occur when using the pseudo-nickname mechanism specified in RFC 7781. This document describes a solution to resolve this RPF check failure issue through centralized replication. All ingress Routing Bridges (RBridges) send Broadcast, Unknown Unicast, and Multicast (BUM) traffic to a centralized node with unicast TRILL encapsulation. When the centralized node receives the BUM traffic, it decapsulates the packets and forwards them to their destination RBridges using a distribution tree established per the TRILL base protocol (RFC 6325). To avoid RPF check failure on an RBridge sitting between the ingress RBridge and the centralized replication node, some change in the RPF calculation algorithm is required. RPF checks on each RBridge MUST be calculated as if the centralized node was the ingress RBridge, instead of being calculated using the actual ingress RBridge. This document updates RFC 6325.
RFC8360 - Resource Public Key Infrastructure (RPKI) Validation Reconsidered
This document specifies an alternative to the certificate validation procedure specified in RFC 6487 that reduces aspects of operational fragility in the management of certificates in the Resource Public Key Infrastructure (RPKI), while retaining essential security features.
RFC8359 - Network-Assigned Upstream Label
This document discusses a Generalized Multi-Protocol Label Switching (GMPLS) Resource reSerVation Protocol with Traffic Engineering (RSVP-TE) mechanism that enables the network to assign an upstream label for a bidirectional Label Switched Path (LSP). This is useful in scenarios where a given node does not have sufficient information to assign the correct upstream label on its own and needs to rely on the downstream node to pick an appropriate label. This document updates RFCs 3471, 3473, and 6205 as it defines processing for a special label value in the UPSTREAM_LABEL object.
RFC8358 - Update to Digital Signatures on Internet-Draft Documents
RFC 5485 specifies the conventions for digital signatures on Internet-Drafts. The Cryptographic Message Syntax (CMS) is used to create a detached signature, which is stored in a separate companion file so that no existing utilities are impacted by the addition of the digital signature.
RFC8357 - Generalized UDP Source Port for DHCP Relay
This document defines an extension to the DHCP protocols that allows a relay agent to use any available source port for upstream communications. The extension also allows inclusion of a DHCP option that can be used to statelessly route responses back to the appropriate source port on downstream communications.
RFC8356 - Experimental Codepoint Allocation for the Path Computation Element Communication Protocol (PCEP)
IANA assigns values to the Path Computation Element Communication Protocol (PCEP) parameters (messages, objects, TLVs). IANA established a top-level registry to contain all PCEP codepoints and sub-registries. This top-level registry contains sub-registries for PCEP message, object, and TLV types. The allocation policy for each of these sub-registries is IETF Review.
RFC8355 - Resiliency Use Cases in Source Packet Routing in Networking (SPRING) Networks
This document identifies and describes the requirements for a set of use cases related to Segment Routing network resiliency on Source Packet Routing in Networking (SPRING) networks.
RFC8354 - Use Cases for IPv6 Source Packet Routing in Networking (SPRING)
The Source Packet Routing in Networking (SPRING) architecture describes how Segment Routing can be used to steer packets through an IPv6 or MPLS network using the source routing paradigm. This document illustrates some use cases for Segment Routing in an IPv6-only environment.
RFC8353 - Generic Security Service API Version 2: Java Bindings Update
The Generic Security Services Application Programming Interface (GSS-API) offers application programmers uniform access to security services atop a variety of underlying cryptographic mechanisms. This document updates the Java bindings for the GSS-API that are specified in "Generic Security Service API Version 2: Java Bindings Update" (RFC 5653). This document obsoletes RFC 5653 by adding a new output token field to the GSSException class so that when the initSecContext or acceptSecContext methods of the GSSContext class fail, it has a chance to emit an error token that can be sent to the peer for debugging or informational purpose. The stream-based GSSContext methods are also removed in this version.
RFC8352 - Energy-Efficient Features of Internet of Things Protocols
This document describes the challenges for energy-efficient protocol operation on constrained devices and the current practices used to overcome those challenges. It summarizes the main link-layer techniques used for energy-efficient networking, and it highlights the impact of such techniques on the upper-layer protocols so that they can together achieve an energy-efficient behavior. The document also provides an overview of energy-efficient mechanisms available at each layer of the IETF protocol suite specified for constrained-node networks.
RFC8351 - The PKCS #8 EncryptedPrivateKeyInfo Media Type
This document registers the application/pkcs8-encrypted media type for the EncryptedPrivateKeyInfo type of PKCS #8. An instance of this media type carries a single encrypted private key, BER-encoded as a single EncryptedPrivateKeyInfo value.
RFC8350 - Alternate Tunnel Encapsulation for Data Frames in Control and Provisioning of Wireless Access Points (CAPWAP)
Control and Provisioning of Wireless Access Points (CAPWAP) is a protocol for encapsulating a station's data frames between the Wireless Transmission Point (WTP) and Access Controller (AC). Specifically, the station's IEEE 802.11 data frames can be either locally bridged or tunneled to the AC. When tunneled, a CAPWAP Data Channel is used for tunneling. In many deployments, encapsulating data frames to an entity other than the AC (for example, to an Access Router (AR)) is desirable. Furthermore, it may also be desirable to use different tunnel encapsulation modes between the WTP and the Access Router. This document defines an extension to the CAPWAP protocol that supports this capability and refers to it as alternate tunnel encapsulation. The alternate tunnel encapsulation allows 1) the WTP to tunnel non-management data frames to an endpoint different from the AC and 2) the WTP to tunnel using one of many known encapsulation types, such as IP-IP, IP-GRE, or CAPWAP. The WTP may advertise support for alternate tunnel encapsulation during the discovery and join process, and the AC may select one of the supported alternate tunnel encapsulation types while configuring the WTP.
RFC8349 - A YANG Data Model for Routing Management (NMDA Version)
This document specifies three YANG modules and one submodule. Together, they form the core routing data model that serves as a framework for configuring and managing a routing subsystem. It is expected that these modules will be augmented by additional YANG modules defining data models for control-plane protocols, route filters, and other functions. The core routing data model provides common building blocks for such extensions -- routes, Routing Information Bases (RIBs), and control-plane protocols.
RFC8348 - A YANG Data Model for Hardware Management
This document defines a YANG data model for the management of hardware on a single server.
RFC8347 - A YANG Data Model for the Virtual Router Redundancy Protocol (VRRP)
This document describes a data model for the Virtual Router Redundancy Protocol (VRRP). Both versions 2 and 3 of VRRP are covered.
RFC8346 - A YANG Data Model for Layer 3 Topologies
This document defines a YANG data model for Layer 3 network topologies.
RFC8345 - A YANG Data Model for Network Topologies
This document defines an abstract (generic, or base) YANG data model for network/service topologies and inventories. The data model serves as a base model that is augmented with technology-specific details in other, more specific topology and inventory data models.
RFC8344 - A YANG Data Model for IP Management
This document defines a YANG data model for management of IP implementations. The data model includes configuration and system state.
RFC8343 - A YANG Data Model for Interface Management
This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics).
RFC8342 - Network Management Datastore Architecture (NMDA)
Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.
RFC8341 - Network Configuration Access Control Model
The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
RFC8340 - YANG Tree Diagrams
This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.
RFC8339 - Definition of P2MP PW TLV for Label Switched Path (LSP) Ping Mechanisms
Label Switched Path (LSP) Ping is a widely deployed Operation, Administration, and Maintenance (OAM) mechanism in MPLS networks. This document describes a mechanism to verify connectivity of Point-to-Multipoint (P2MP) Pseudowires (PWs) using LSP Ping.
RFC8338 - Signaling Root-Initiated Point-to-Multipoint Pseudowire Using LDP
This document specifies a mechanism to signal Point-to-Multipoint (P2MP) Pseudowire (PW) trees using LDP. Such a mechanism is suitable for any Layer 2 VPN service requiring P2MP connectivity over an IP or MPLS-enabled PSN. A P2MP PW established via the proposed mechanism is root initiated. This document updates RFC 7385 by reassigning the reserved value 0xFF to be the wildcard transport tunnel type.
RFC8337 - Model-Based Metrics for Bulk Transport Capacity
This document introduces a new class of Model-Based Metrics designed to assess if a complete Internet path can be expected to meet a predefined Target Transport Performance by applying a suite of IP diagnostic tests to successive subpaths. The subpath-at-a-time tests can be robustly applied to critical infrastructure, such as network interconnections or even individual devices, to accurately detect if any part of the infrastructure will prevent paths traversing it from meeting the Target Transport Performance.
RFC8336 - The ORIGIN HTTP/2 Frame
This document specifies the ORIGIN frame for HTTP/2, to indicate what origins are available on a given connection.
RFC8335 - PROBE: A Utility for Probing Interfaces
This document describes a network diagnostic tool called PROBE. PROBE is similar to PING in that it can be used to query the status of a probed interface, but it differs from PING in that it does not require bidirectional connectivity between the probing and probed interfaces. Instead, PROBE requires bidirectional connectivity between the probing interface and a proxy interface. The proxy interface can reside on the same node as the probed interface, or it can reside on a node to which the probed interface is directly connected. This document updates RFC 4884.
RFC8334 - Launch Phase Mapping for the Extensible Provisioning Protocol (EPP)
This document describes an Extensible Provisioning Protocol (EPP) extension mapping for the provisioning and management of domain name registrations and applications during the launch of a domain name registry.
RFC8333 - Micro-loop Prevention by Introducing a Local Convergence Delay
This document describes a mechanism for link-state routing protocols that prevents local transient forwarding loops in case of link failure. This mechanism proposes a two-step convergence by introducing a delay between the convergence of the node adjacent to the topology change and the network-wide convergence.
RFC8332 - Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol
This memo updates RFCs 4252 and 4253 to define new public key algorithms for use of RSA keys with SHA-256 and SHA-512 for server and client authentication in SSH connections.
RFC8331 - RTP Payload for Society of Motion Picture and Television Engineers (SMPTE) ST 291-1 Ancillary Data
This memo describes a Real-time Transport Protocol (RTP) payload format for the Society of Motion Picture and Television Engineers (SMPTE) ancillary space (ANC) data, as defined by SMPTE ST 291-1. SMPTE ANC data is generally used along with professional video formats to carry a range of ancillary data types, including time code, Closed Captioning, and the Active Format Description (AFD).
RFC8330 - OSPF Traffic Engineering (OSPF-TE) Link Availability Extension for Links with Variable Discrete Bandwidth
A network may contain links with variable discrete bandwidth, e.g., microwave and copper. The bandwidth of such links may change discretely in response to a changing external environment. The word "availability" is typically used to describe such links during network planning. This document defines a new type of Generalized Switching Capability-Specific Information (SCSI) TLV to extend the Generalized Multiprotocol Label Switching (GMPLS) Open Shortest Path First (OSPF) routing protocol. The extension can be used for route computation in a network that contains links with variable discrete bandwidth. Note that this document only covers the mechanisms by which the availability information is distributed. The mechanisms by which availability information of a link is determined and the use of the distributed information for route computation are outside the scope of this document. It is intended that technology-specific documents will reference this document to describe specific uses.
When a link is being prepared to be taken out of service, the traffic needs to be diverted from both ends of the link. Increasing the metric to the highest value on one side of the link is not sufficient to divert the traffic flowing in the other direction.
RFC8378 - Signal-Free Locator/ID Separation Protocol (LISP) Multicast
When multicast sources and receivers are active at Locator/ID Separation Protocol (LISP) sites, the core network is required to use native multicast so packets can be delivered from sources to group members. When multicast is not available to connect the multicast sites together, a signal-free mechanism can be used to allow traffic to flow between sites. The mechanism described in this document uses unicast replication and encapsulation over the core network for the data plane and uses the LISP mapping database system so encapsulators at the source LISP multicast site can find decapsulators at the receiver LISP multicast sites.
RFC8377 - Transparent Interconnection of Lots of Links (TRILL): Multi-Topology
This document specifies extensions to the IETF TRILL (Transparent Interconnection of Lots of Links) protocol to support multi-topology routing of unicast and multi-destination traffic based on IS-IS (Intermediate System to Intermediate System) multi-topology specified in RFC 5120. This document updates RFCs 6325 and 7177.
RFC8376 - Low-Power Wide Area Network (LPWAN) Overview
Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation. This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.
RFC8375 - Special-Use Domain 'home.arpa.'
This document specifies the behavior that is expected from the Domain Name System with regard to DNS queries for names ending with '.home.arpa.' and designates this domain as a special-use domain name. 'home.arpa.' is designated for non-unique use in residential home networks. The Home Networking Control Protocol (HNCP) is updated to use the 'home.arpa.' domain instead of '.home'.
RFC8374 - BGPsec Design Choices and Summary of Supporting Discussions
This document captures the design rationale of the initial draft version of what became RFC 8205 (the BGPsec protocol specification). The designers needed to balance many competing factors, and this document lists the decisions that were made in favor of or against each design choice. This document also presents brief summaries of the arguments that aided the decision process. Where appropriate, this document also provides brief notes on design decisions that changed as the specification was reviewed and updated by the IETF SIDR Working Group and that resulted in RFC 8205. These notes highlight the differences and provide pointers to details and rationale regarding those design changes.
RFC8373 - Negotiating Human Language in Real-Time Communications
Users have various human (i.e., natural) language needs, abilities, and preferences regarding spoken, written, and signed languages. This document defines new Session Description Protocol (SDP) media- level attributes so that when establishing interactive communication sessions ("calls"), it is possible to negotiate (i.e., communicate and match) the caller's language and media needs with the capabilities of the called party. This is especially important for emergency calls, because it allows for a call to be handled by a call taker capable of communicating with the user or for a translator or relay operator to be bridged into the call during setup. However, this also applies to non-emergency calls (for example, calls to a company call center).
RFC8372 - MPLS Flow Identification Considerations
This document discusses aspects to consider when developing a solution for MPLS flow identification. The key application that needs this solution is in-band performance monitoring of MPLS flows when MPLS is used to encapsulate user data packets.
RFC8371 - Mobile Node Identifier Types for MIPv6
This document defines additional identifier type numbers for use with the mobile node identifier option for Mobile IPv6 (MIPv6) as defined by RFC 4283.
RFC8370 - Techniques to Improve the Scalability of RSVP-TE Deployments
Networks that utilize RSVP-TE LSPs are encountering implementations that have a limited ability to support the growth in the number of LSPs deployed.
RFC8369 - Internationalizing IPv6 Using 128-Bit Unicode
It is clear that Unicode will eventually exhaust its supply of code points, and more will be needed. Assuming ISO and the Unicode Consortium follow the practices of the IETF, the next Unicode code point size will be 128 bits. This document describes how this future 128-bit Unicode can be leveraged to improve IPv6 adoption and finally bring internationalization support to IPv6.
RFC8368 - Using an Autonomic Control Plane for Stable Connectivity of Network Operations, Administration, and Maintenance (OAM)
Operations, Administration, and Maintenance (OAM), as per BCP 161, for data networks is often subject to the problem of circular dependencies when relying on connectivity provided by the network to be managed for the OAM purposes.
RFC8367 - Wrongful Termination of Internet Protocol (IP) Packets
Routers and middleboxes terminate packets for various reasons. In some cases, these packets are wrongfully terminated. This memo describes some of the most common scenarios of wrongful termination of Internet Protocol (IP) packets and presents recommendations for mitigating them.
RFC8366 - A Voucher Artifact for Bootstrapping Protocols
This document defines a strategy to securely assign a pledge to an owner using an artifact signed, directly or indirectly, by the pledge's manufacturer. This artifact is known as a "voucher".
RFC8365 - A Network Virtualization Overlay Solution Using Ethernet VPN (EVPN)
This document specifies how Ethernet VPN (EVPN) can be used as a Network Virtualization Overlay (NVO) solution and explores the various tunnel encapsulation options over IP and their impact on the EVPN control plane and procedures. In particular, the following encapsulation options are analyzed: Virtual Extensible LAN (VXLAN), Network Virtualization using Generic Routing Encapsulation (NVGRE), and MPLS over GRE. This specification is also applicable to Generic Network Virtualization Encapsulation (GENEVE); however, some incremental work is required, which will be covered in a separate document. This document also specifies new multihoming procedures for split-horizon filtering and mass withdrawal. It also specifies EVPN route constructions for VXLAN/NVGRE encapsulations and Autonomous System Border Router (ASBR) procedures for multihoming of Network Virtualization Edge (NVE) devices.
RFC8364 - PIM Flooding Mechanism (PFM) and Source Discovery (SD)
Protocol Independent Multicast - Sparse Mode (PIM-SM) uses a Rendezvous Point (RP) and shared trees to forward multicast packets from new sources. Once Last-Hop Routers (LHRs) receive packets from a new source, they may join the Shortest Path Tree (SPT) for the source for optimal forwarding. This document defines a new mechanism that provides a way to support PIM-SM without the need for PIM registers, RPs, or shared trees. Multicast source information is flooded throughout the multicast domain using a new generic PIM Flooding Mechanism (PFM). This allows LHRs to learn about new sources without receiving initial data packets.
RFC8363 - GMPLS OSPF-TE Extensions in Support of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) Networks
The International Telecommunication Union Telecommunication standardization sector (ITU-T) has extended its Recommendations G.694.1 and G.872 to include a new Dense Wavelength Division Multiplexing (DWDM) grid by defining channel spacings, a set of nominal central frequencies, and the concept of the "frequency slot". Corresponding techniques for data-plane connections are known as "flexi-grid".
RFC8362 - OSPFv3 Link State Advertisement (LSA) Extensibility
OSPFv3 requires functional extension beyond what can readily be done with the fixed-format Link State Advertisement (LSA) as described in RFC 5340. Without LSA extension, attributes associated with OSPFv3 links and advertised IPv6 prefixes must be advertised in separate LSAs and correlated to the fixed-format LSAs. This document extends the LSA format by encoding the existing OSPFv3 LSA information in Type-Length-Value (TLV) tuples and allowing advertisement of additional information with additional TLVs. Backward-compatibility mechanisms are also described.
RFC8361 - Transparent Interconnection of Lots of Links (TRILL): Centralized Replication for Active-Active Broadcast, Unknown Unicast, and Multicast (BUM) Traffic
In Transparent Interconnection of Lots of Links (TRILL) active-active access, a Reverse Path Forwarding (RPF) check failure issue may occur when using the pseudo-nickname mechanism specified in RFC 7781. This document describes a solution to resolve this RPF check failure issue through centralized replication. All ingress Routing Bridges (RBridges) send Broadcast, Unknown Unicast, and Multicast (BUM) traffic to a centralized node with unicast TRILL encapsulation. When the centralized node receives the BUM traffic, it decapsulates the packets and forwards them to their destination RBridges using a distribution tree established per the TRILL base protocol (RFC 6325). To avoid RPF check failure on an RBridge sitting between the ingress RBridge and the centralized replication node, some change in the RPF calculation algorithm is required. RPF checks on each RBridge MUST be calculated as if the centralized node was the ingress RBridge, instead of being calculated using the actual ingress RBridge. This document updates RFC 6325.
RFC8360 - Resource Public Key Infrastructure (RPKI) Validation Reconsidered
This document specifies an alternative to the certificate validation procedure specified in RFC 6487 that reduces aspects of operational fragility in the management of certificates in the Resource Public Key Infrastructure (RPKI), while retaining essential security features.
RFC8359 - Network-Assigned Upstream Label
This document discusses a Generalized Multi-Protocol Label Switching (GMPLS) Resource reSerVation Protocol with Traffic Engineering (RSVP-TE) mechanism that enables the network to assign an upstream label for a bidirectional Label Switched Path (LSP). This is useful in scenarios where a given node does not have sufficient information to assign the correct upstream label on its own and needs to rely on the downstream node to pick an appropriate label. This document updates RFCs 3471, 3473, and 6205 as it defines processing for a special label value in the UPSTREAM_LABEL object.
RFC8358 - Update to Digital Signatures on Internet-Draft Documents
RFC 5485 specifies the conventions for digital signatures on Internet-Drafts. The Cryptographic Message Syntax (CMS) is used to create a detached signature, which is stored in a separate companion file so that no existing utilities are impacted by the addition of the digital signature.
RFC8357 - Generalized UDP Source Port for DHCP Relay
This document defines an extension to the DHCP protocols that allows a relay agent to use any available source port for upstream communications. The extension also allows inclusion of a DHCP option that can be used to statelessly route responses back to the appropriate source port on downstream communications.
RFC8356 - Experimental Codepoint Allocation for the Path Computation Element Communication Protocol (PCEP)
IANA assigns values to the Path Computation Element Communication Protocol (PCEP) parameters (messages, objects, TLVs). IANA established a top-level registry to contain all PCEP codepoints and sub-registries. This top-level registry contains sub-registries for PCEP message, object, and TLV types. The allocation policy for each of these sub-registries is IETF Review.
RFC8355 - Resiliency Use Cases in Source Packet Routing in Networking (SPRING) Networks
This document identifies and describes the requirements for a set of use cases related to Segment Routing network resiliency on Source Packet Routing in Networking (SPRING) networks.
RFC8354 - Use Cases for IPv6 Source Packet Routing in Networking (SPRING)
The Source Packet Routing in Networking (SPRING) architecture describes how Segment Routing can be used to steer packets through an IPv6 or MPLS network using the source routing paradigm. This document illustrates some use cases for Segment Routing in an IPv6-only environment.
RFC8353 - Generic Security Service API Version 2: Java Bindings Update
The Generic Security Services Application Programming Interface (GSS-API) offers application programmers uniform access to security services atop a variety of underlying cryptographic mechanisms. This document updates the Java bindings for the GSS-API that are specified in "Generic Security Service API Version 2: Java Bindings Update" (RFC 5653). This document obsoletes RFC 5653 by adding a new output token field to the GSSException class so that when the initSecContext or acceptSecContext methods of the GSSContext class fail, it has a chance to emit an error token that can be sent to the peer for debugging or informational purpose. The stream-based GSSContext methods are also removed in this version.
RFC8352 - Energy-Efficient Features of Internet of Things Protocols
This document describes the challenges for energy-efficient protocol operation on constrained devices and the current practices used to overcome those challenges. It summarizes the main link-layer techniques used for energy-efficient networking, and it highlights the impact of such techniques on the upper-layer protocols so that they can together achieve an energy-efficient behavior. The document also provides an overview of energy-efficient mechanisms available at each layer of the IETF protocol suite specified for constrained-node networks.
RFC8351 - The PKCS #8 EncryptedPrivateKeyInfo Media Type
This document registers the application/pkcs8-encrypted media type for the EncryptedPrivateKeyInfo type of PKCS #8. An instance of this media type carries a single encrypted private key, BER-encoded as a single EncryptedPrivateKeyInfo value.
RFC8350 - Alternate Tunnel Encapsulation for Data Frames in Control and Provisioning of Wireless Access Points (CAPWAP)
Control and Provisioning of Wireless Access Points (CAPWAP) is a protocol for encapsulating a station's data frames between the Wireless Transmission Point (WTP) and Access Controller (AC). Specifically, the station's IEEE 802.11 data frames can be either locally bridged or tunneled to the AC. When tunneled, a CAPWAP Data Channel is used for tunneling. In many deployments, encapsulating data frames to an entity other than the AC (for example, to an Access Router (AR)) is desirable. Furthermore, it may also be desirable to use different tunnel encapsulation modes between the WTP and the Access Router. This document defines an extension to the CAPWAP protocol that supports this capability and refers to it as alternate tunnel encapsulation. The alternate tunnel encapsulation allows 1) the WTP to tunnel non-management data frames to an endpoint different from the AC and 2) the WTP to tunnel using one of many known encapsulation types, such as IP-IP, IP-GRE, or CAPWAP. The WTP may advertise support for alternate tunnel encapsulation during the discovery and join process, and the AC may select one of the supported alternate tunnel encapsulation types while configuring the WTP.
RFC8349 - A YANG Data Model for Routing Management (NMDA Version)
This document specifies three YANG modules and one submodule. Together, they form the core routing data model that serves as a framework for configuring and managing a routing subsystem. It is expected that these modules will be augmented by additional YANG modules defining data models for control-plane protocols, route filters, and other functions. The core routing data model provides common building blocks for such extensions -- routes, Routing Information Bases (RIBs), and control-plane protocols.
RFC8348 - A YANG Data Model for Hardware Management
This document defines a YANG data model for the management of hardware on a single server.
RFC8347 - A YANG Data Model for the Virtual Router Redundancy Protocol (VRRP)
This document describes a data model for the Virtual Router Redundancy Protocol (VRRP). Both versions 2 and 3 of VRRP are covered.
RFC8346 - A YANG Data Model for Layer 3 Topologies
This document defines a YANG data model for Layer 3 network topologies.
RFC8345 - A YANG Data Model for Network Topologies
This document defines an abstract (generic, or base) YANG data model for network/service topologies and inventories. The data model serves as a base model that is augmented with technology-specific details in other, more specific topology and inventory data models.
RFC8344 - A YANG Data Model for IP Management
This document defines a YANG data model for management of IP implementations. The data model includes configuration and system state.
RFC8343 - A YANG Data Model for Interface Management
This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics).
RFC8342 - Network Management Datastore Architecture (NMDA)
Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.
RFC8341 - Network Configuration Access Control Model
The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
RFC8340 - YANG Tree Diagrams
This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.
RFC8339 - Definition of P2MP PW TLV for Label Switched Path (LSP) Ping Mechanisms
Label Switched Path (LSP) Ping is a widely deployed Operation, Administration, and Maintenance (OAM) mechanism in MPLS networks. This document describes a mechanism to verify connectivity of Point-to-Multipoint (P2MP) Pseudowires (PWs) using LSP Ping.
RFC8338 - Signaling Root-Initiated Point-to-Multipoint Pseudowire Using LDP
This document specifies a mechanism to signal Point-to-Multipoint (P2MP) Pseudowire (PW) trees using LDP. Such a mechanism is suitable for any Layer 2 VPN service requiring P2MP connectivity over an IP or MPLS-enabled PSN. A P2MP PW established via the proposed mechanism is root initiated. This document updates RFC 7385 by reassigning the reserved value 0xFF to be the wildcard transport tunnel type.
RFC8337 - Model-Based Metrics for Bulk Transport Capacity
This document introduces a new class of Model-Based Metrics designed to assess if a complete Internet path can be expected to meet a predefined Target Transport Performance by applying a suite of IP diagnostic tests to successive subpaths. The subpath-at-a-time tests can be robustly applied to critical infrastructure, such as network interconnections or even individual devices, to accurately detect if any part of the infrastructure will prevent paths traversing it from meeting the Target Transport Performance.
RFC8336 - The ORIGIN HTTP/2 Frame
This document specifies the ORIGIN frame for HTTP/2, to indicate what origins are available on a given connection.
RFC8335 - PROBE: A Utility for Probing Interfaces
This document describes a network diagnostic tool called PROBE. PROBE is similar to PING in that it can be used to query the status of a probed interface, but it differs from PING in that it does not require bidirectional connectivity between the probing and probed interfaces. Instead, PROBE requires bidirectional connectivity between the probing interface and a proxy interface. The proxy interface can reside on the same node as the probed interface, or it can reside on a node to which the probed interface is directly connected. This document updates RFC 4884.
RFC8334 - Launch Phase Mapping for the Extensible Provisioning Protocol (EPP)
This document describes an Extensible Provisioning Protocol (EPP) extension mapping for the provisioning and management of domain name registrations and applications during the launch of a domain name registry.
RFC8333 - Micro-loop Prevention by Introducing a Local Convergence Delay
This document describes a mechanism for link-state routing protocols that prevents local transient forwarding loops in case of link failure. This mechanism proposes a two-step convergence by introducing a delay between the convergence of the node adjacent to the topology change and the network-wide convergence.
RFC8332 - Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol
This memo updates RFCs 4252 and 4253 to define new public key algorithms for use of RSA keys with SHA-256 and SHA-512 for server and client authentication in SSH connections.
RFC8331 - RTP Payload for Society of Motion Picture and Television Engineers (SMPTE) ST 291-1 Ancillary Data
This memo describes a Real-time Transport Protocol (RTP) payload format for the Society of Motion Picture and Television Engineers (SMPTE) ancillary space (ANC) data, as defined by SMPTE ST 291-1. SMPTE ANC data is generally used along with professional video formats to carry a range of ancillary data types, including time code, Closed Captioning, and the Active Format Description (AFD).
RFC8330 - OSPF Traffic Engineering (OSPF-TE) Link Availability Extension for Links with Variable Discrete Bandwidth
A network may contain links with variable discrete bandwidth, e.g., microwave and copper. The bandwidth of such links may change discretely in response to a changing external environment. The word "availability" is typically used to describe such links during network planning. This document defines a new type of Generalized Switching Capability-Specific Information (SCSI) TLV to extend the Generalized Multiprotocol Label Switching (GMPLS) Open Shortest Path First (OSPF) routing protocol. The extension can be used for route computation in a network that contains links with variable discrete bandwidth. Note that this document only covers the mechanisms by which the availability information is distributed. The mechanisms by which availability information of a link is determined and the use of the distributed information for route computation are outside the scope of this document. It is intended that technology-specific documents will reference this document to describe specific uses.