RFC Abstracts
RFC7565 - The 'acct' URI Scheme
This document defines the 'acct' Uniform Resource Identifier (URI) scheme as a way to identify a user's account at a service provider, irrespective of the particular protocols that can be used to interact with the account.
RFC7564 - PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols
Application protocols using Unicode characters in protocol strings need to properly handle such strings in order to enforce internationalization rules for strings placed in various protocol slots (such as addresses and identifiers) and to perform valid comparison operations (e.g., for purposes of authentication or authorization). This document defines a framework enabling application protocols to perform the preparation, enforcement, and comparison of internationalized strings ("PRECIS") in a way that depends on the properties of Unicode characters and thus is agile with respect to versions of Unicode. As a result, this framework provides a more sustainable approach to the handling of internationalized strings than the previous framework, known as Stringprep (RFC 3454). This document obsoletes RFC 3454.
RFC7563 - Extensions to the Proxy Mobile IPv6 (PMIPv6) Access Network Identifier Option
The Access Network Identifier (ANI) mobility option was introduced in RFC 6757, "Access Network Identifier (ANI) Option for Proxy Mobile IPv6". This enables a Mobile Access Gateway (MAG) to convey identifiers like the network identifier, geolocation, and operator identifier. This specification extends the Access Network Identifier mobility option with sub-options to carry the civic location and the MAG group identifier. This specification also defines an ANI Update-Timer sub-option that determines when and how often the ANI option will be updated.
RFC7562 - Transport Layer Security (TLS) Authorization Using Digital Transmission Content Protection (DTCP) Certificates
This document specifies the use of Digital Transmission Content Protection (DTCP) certificates as an authorization data type in the authorization extension for the Transport Layer Security (TLS) protocol. This is in accordance with the guidelines for authorization extensions as specified in RFC 5878. As with other TLS extensions, this authorization data can be included in the client and server hello messages to confirm that both parties support the desired authorization data types. If supported by both the client and the server, DTCP certificates are exchanged in the supplemental data TLS handshake message as specified in RFC 4680. This authorization data type extension is in support of devices containing DTCP certificates issued by the Digital Transmission Licensing Administrator (DTLA).
RFC7561 - Mapping Quality of Service (QoS) Procedures of Proxy Mobile IPv6 (PMIPv6) and WLAN
This document provides guidelines for achieving end-to-end Quality of Service (QoS) in a Proxy Mobile IPv6 (PMIPv6) domain where the access network is based on IEEE 802.11. RFC 7222 describes QoS negotiation between a Mobile Access Gateway (MAG) and Local Mobility Anchor (LMA) in a PMIPv6 mobility domain. The negotiated QoS parameters can be used for QoS policing and marking of packets to enforce QoS differentiation on the path between the MAG and LMA. IEEE 802.11 and Wi-Fi Multimedia - Admission Control (WMM-AC) describe methods for QoS negotiation between a Wi-Fi Station (MN in PMIPv6 terminology) and an Access Point. This document provides a mapping between the above two sets of QoS procedures and the associated QoS parameters. This document is intended to be used as a companion document to RFC 7222 to enable implementation of end-to-end QoS.
RFC7560 - Problem Statement and Requirements for Increased Accuracy in Explicit Congestion Notification (ECN) Feedback
Explicit Congestion Notification (ECN) is a mechanism where network nodes can mark IP packets, instead of dropping them, to indicate congestion to the endpoints. An ECN-capable receiver will feed this information back to the sender. ECN is specified for TCP in such a way that it can only feed back one congestion signal per Round-Trip Time (RTT). In contrast, ECN for other transport protocols, such as RTP/UDP and SCTP, is specified with more accurate ECN feedback. Recent new TCP mechanisms (like Congestion Exposure (ConEx) or Data Center TCP (DCTCP)) need more accurate ECN feedback in the case where more than one marking is received in one RTT. This document specifies requirements for an update to the TCP protocol to provide more accurate ECN feedback.
RFC7559 - Packet-Loss Resiliency for Router Solicitations
When an interface on a host is initialized, the host transmits Router Solicitations in order to minimize the amount of time it needs to wait until the next unsolicited multicast Router Advertisement is received. In certain scenarios, these Router Solicitations transmitted by the host might be lost. This document specifies a mechanism for hosts to cope with the loss of the initial Router Solicitations.
RFC7558 - Requirements for Scalable DNS-Based Service Discovery (DNS-SD) / Multicast DNS (mDNS) Extensions
DNS-based Service Discovery (DNS-SD) over Multicast DNS (mDNS) is widely used today for discovery and resolution of services and names on a local link, but there are use cases to extend DNS-SD/mDNS to enable service discovery beyond the local link. This document provides a problem statement and a list of requirements for scalable DNS-SD.
RFC7557 - Extension Mechanism for the Babel Routing Protocol
This document defines the encoding of extensions to the Babel routing protocol, as specified in RFC 6126.
RFC7556 - Multiple Provisioning Domain Architecture
This document is a product of the work of the Multiple Interfaces Architecture Design team. It outlines a solution framework for some of the issues experienced by nodes that can be attached to multiple networks simultaneously. The framework defines the concept of a Provisioning Domain (PvD), which is a consistent set of network configuration information. PvD-aware nodes learn PvD-specific information from the networks they are attached to and/or other sources. PvDs are used to enable separation and configuration consistency in the presence of multiple concurrent connections.
RFC7555 - Proxy MPLS Echo Request
This document defines a means of remotely initiating Multiprotocol Label Switched Protocol (MPLS) Pings on Label Switched Paths. An MPLS Proxy Ping Request is sent to any Label Switching Router along a Label Switched Path. The primary motivations for this facility are first to limit the number of messages and related processing when using LSP Ping in large Point-to-Multipoint LSPs, and second to enable tracing from leaf to leaf (or root).
RFC7554 - Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement
This document describes the environment, problem statement, and goals for using the Time-Slotted Channel Hopping (TSCH) Medium Access Control (MAC) protocol of IEEE 802.14.4e in the context of Low-Power and Lossy Networks (LLNs). The set of goals enumerated in this document form an initial set only.
RFC7553 - The Uniform Resource Identifier (URI) DNS Resource Record
This document describes the already registered DNS resource record (RR) type, called the Uniform Resource Identifier (URI) RR, that is used for publishing mappings from hostnames to URIs.
RFC7552 - Updates to LDP for IPv6
The Label Distribution Protocol (LDP) specification defines procedures to exchange label bindings over either IPv4 or IPv6 networks, or both. This document corrects and clarifies the LDP behavior when an IPv6 network is used (with or without IPv4). This document updates RFCs 5036 and 6720.
RFC7551 - RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)
This document describes Resource Reservation Protocol (RSVP) extensions to bind two point-to-point unidirectional Label Switched Paths (LSPs) into an associated bidirectional LSP. The association is achieved by defining new Association Types for use in ASSOCIATION and in Extended ASSOCIATION Objects. One of these types enables independent provisioning of the associated bidirectional LSPs on both sides, while the other enables single-sided provisioning. The REVERSE_LSP Object is also defined to enable a single endpoint to trigger creation of the reverse LSP and to specify parameters of the reverse LSP in the single-sided provisioning case.
RFC7550 - Issues and Recommendations with Multiple Stateful DHCPv6 Options
The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) specification defined two stateful options, IA_NA and IA_TA, but did not anticipate the development of additional stateful options. DHCPv6 Prefix Delegation added the IA_PD option, which is stateful. Applications that use IA_NA and IA_PD together have revealed issues that need to be addressed. This document updates RFCs 3315 and 3633 to address these issues.
RFC7549 - 3GPP SIP URI Inter-Operator Traffic Leg Parameter
In 3GPP networks, the signaling path between a calling user and a called user can be partitioned into segments, referred to as traffic legs. Each traffic leg may span networks belonging to different operators and will have its own characteristics that can be different from other traffic legs in the same call. A traffic leg might be associated with multiple SIP dialogs, e.g., in case a Back-to-Back User Agent (B2BUA) that modifies the SIP dialog identifier is located within the traffic leg.
RFC7548 - Management of Networks with Constrained Devices: Use Cases
This document discusses use cases concerning the management of networks in which constrained devices are involved. A problem statement, deployment options, and the requirements on the networks with constrained devices can be found in the companion document on "Management of Networks with Constrained Devices: Problem Statement and Requirements" (RFC 7547).
RFC7547 - Management of Networks with Constrained Devices: Problem Statement and Requirements
This document provides a problem statement, deployment and management topology options, as well as requirements addressing the different use cases of the management of networks where constrained devices are involved.
RFC7546 - Structure of the Generic Security Service (GSS) Negotiation Loop
This document specifies the generic structure of the negotiation loop to establish a Generic Security Service (GSS) security context between initiator and acceptor. The control flow of the loop is indicated for both parties, including error conditions, and indications are given for where application-specific behavior must be specified.
RFC7545 - Protocol to Access White-Space (PAWS) Databases
Portions of the radio spectrum that are allocated to licensees are available for non-interfering use. This available spectrum is called "white space". Allowing secondary users access to available spectrum "unlocks" existing spectrum to maximize its utilization and to provide opportunities for innovation, resulting in greater overall spectrum utilization.
RFC7544 - Mapping and Interworking of Diversion Information between Diversion and History-Info Header Fields in the Session Initiation Protocol (SIP)
Although the SIP History-Info header field described in RFC 7044 is the solution adopted in IETF, the non-standard Diversion header field described, as Historic, in RFC 5806 is nevertheless already implemented and used for conveying call-diversion-related information in Session Initiation Protocol (SIP) signaling.
RFC7543 - Covering Prefixes Outbound Route Filter for BGP-4
This document defines a new Outbound Route Filter (ORF) type, called the Covering Prefixes ORF (CP-ORF). CP-ORF is applicable in Virtual Hub-and-Spoke VPNs. It also is applicable in BGP/MPLS Ethernet VPN (EVPN) networks.
RFC7542 - The Network Access Identifier
In order to provide inter-domain authentication services, it is necessary to have a standardized method that domains can use to identify each other's users. This document defines the syntax for the Network Access Identifier (NAI), the user identifier submitted by the client prior to accessing resources. This document is a revised version of RFC 4282. It addresses issues with international character sets and makes a number of other corrections to RFC 4282.
RFC7541 - HPACK: Header Compression for HTTP/2
This specification defines HPACK, a compression format for efficiently representing HTTP header fields, to be used in HTTP/2.
RFC7540 - Hypertext Transfer Protocol Version 2 (HTTP/2)
This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of representations from servers to clients.
RFC7539 - ChaCha20 and Poly1305 for IETF Protocols
This document defines the ChaCha20 stream cipher as well as the use of the Poly1305 authenticator, both as stand-alone algorithms and as a "combined mode", or Authenticated Encryption with Associated Data (AEAD) algorithm.
RFC7538 - The Hypertext Transfer Protocol Status Code 308 (Permanent Redirect)
This document specifies the additional Hypertext Transfer Protocol (HTTP) status code 308 (Permanent Redirect).
RFC7537 - IANA Registries for LSP Ping Code Points
RFCs 4379 and 6424 created name spaces for Multi-Protocol Label Switching (MPLS) Label Switched Path (LSP) Ping. However, those RFCs did not create the corresponding IANA registries for Downstream Mapping object Flags (DS Flags), Multipath Types, Pad TLVs, and Interface and Label Stack Address Types.
RFC7536 - Large-Scale Broadband Measurement Use Cases
Measuring broadband performance on a large scale is important for network diagnostics by providers and users, as well as for public policy. Understanding the various scenarios and users of measuring broadband performance is essential to development of the Large-scale Measurement of Broadband Performance (LMAP) framework, information model, and protocol. This document details two use cases that can assist in developing that framework. The details of the measurement metrics themselves are beyond the scope of this document.
RFC7535 - AS112 Redirection Using DNAME
AS112 provides a mechanism for handling reverse lookups on IP addresses that are not unique (e.g., RFC 1918 addresses). This document describes modifications to the deployment and use of AS112 infrastructure that will allow zones to be added and dropped much more easily, using DNAME resource records.
RFC7534 - AS112 Nameserver Operations
Many sites connected to the Internet make use of IPv4 addresses that are not globally unique. Examples are the addresses designated in RFC 1918 for private use within individual sites.
RFC7533 - Administration Protocol for Federated File Systems
This document describes the administration protocol for a federated file system (FedFS) that enables file access and namespace traversal across collections of independently administered fileservers. The protocol specifies a set of interfaces by which fileservers with different administrators can form a fileserver federation that provides a namespace composed of the file systems physically hosted on and exported by the constituent fileservers.
RFC7532 - Namespace Database (NSDB) Protocol for Federated File Systems
This document describes a file system federation protocol that enables file access and namespace traversal across collections of independently administered fileservers. The protocol specifies a set of interfaces by which fileservers with different administrators can form a fileserver federation that provides a namespace composed of the file systems physically hosted on and exported by the constituent fileservers.
RFC7531 - Network File System (NFS) Version 4 External Data Representation Standard (XDR) Description
The Network File System (NFS) version 4 protocol is a distributed file system protocol that owes its heritage to NFS protocol version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the MOUNT protocol. In addition, support for strong security (and its negotiation), COMPOUND operations, client caching, and internationalization has been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment.
RFC7530 - Network File System (NFS) Version 4 Protocol
The Network File System (NFS) version 4 protocol is a distributed file system protocol that builds on the heritage of NFS protocol version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the MOUNT protocol. In addition, support for strong security (and its negotiation), COMPOUND operations, client caching, and internationalization has been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment.
RFC7529 - Non-Gregorian Recurrence Rules in the Internet Calendaring and Scheduling Core Object Specification (iCalendar)
This document defines extensions to the Internet Calendaring and Scheduling Core Object Specification (iCalendar) (RFC 5545) to support use of non-Gregorian recurrence rules. It also defines how Calendaring Extensions to WebDAV (CalDAV) (RFC 4791) servers and clients can be extended to support these new recurrence rules.
RFC7528 - A Uniform Resource Name (URN) Namespace for the Hybrid Broadcast Broadband TV (HbbTV) Association
This document describes a Uniform Resource Name (URN) namespace for the Hybrid Broadcast Broadband TV (HbbTV) Association for naming persistent resources defined within HbbTV specifications. Example resources include technical documents and specifications, Extensible Markup Language (XML) Schemas, classification schemes, XML Document Type Definitions (DTDs), namespaces, style sheets, media assets, and other types of resources produced or managed by HbbTV.
RFC7527 - Enhanced Duplicate Address Detection
IPv6 Loopback Suppression and Duplicate Address Detection (DAD) are discussed in Appendix A of RFC 4862. That specification mentions a hardware-assisted mechanism to detect looped back DAD messages. If hardware cannot suppress looped back DAD messages, a software solution is required. Several service provider communities have expressed a need for automated detection of looped back Neighbor Discovery (ND) messages used by DAD. This document includes mitigation techniques and outlines the Enhanced DAD algorithm to automate the detection of looped back IPv6 ND messages used by DAD. For network loopback tests, the Enhanced DAD algorithm allows IPv6 to self-heal after a loopback is placed and removed. Further, for certain access networks, this document automates resolving a specific duplicate address conflict. This document updates RFCs 4429, 4861, and 4862.
RFC7526 - Deprecating the Anycast Prefix for 6to4 Relay Routers
Experience with the 6to4 transition mechanism defined in RFC 3056 ("Connection of IPv6 Domains via IPv4 Clouds") has shown that the mechanism is unsuitable for widespread deployment and use in the Internet when used in its anycast mode. Therefore, this document requests that RFC 3068 ("An Anycast Prefix for 6to4 Relay Routers") and RFC 6732 ("6to4 Provider Managed Tunnels") be made obsolete and moved to Historic status. It recommends that future products should not support 6to4 anycast and that existing deployments should be reviewed. This complements the guidelines in RFC 6343.
RFC7525 - Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.
RFC7524 - Inter-Area Point-to-Multipoint (P2MP) Segmented Label Switched Paths (LSPs)
This document describes procedures for building inter-area point-to-multipoint (P2MP) segmented service label switched paths (LSPs) by partitioning such LSPs into intra-area segments and using BGP as the inter-area routing and Label Distribution Protocol (LDP). Within each IGP area, the intra-area segments are either carried over intra-area P2MP LSPs, using P2MP LSP hierarchy, or instantiated using ingress replication. The intra-area P2MP LSPs may be signaled using P2MP RSVP-TE or P2MP multipoint LDP (mLDP). If ingress replication is used within an IGP area, then (multipoint-to-point) LDP LSPs or (point-to-point) RSVP-TE LSPs may be used in the IGP area. The applications/services that use such inter-area service LSPs may be BGP Multicast VPN, Virtual Private LAN Service (VPLS) multicast, or global table multicast over MPLS.
RFC7523 - JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
This specification defines the use of a JSON Web Token (JWT) Bearer Token as a means for requesting an OAuth 2.0 access token as well as for client authentication.
RFC7522 - Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants
This specification defines the use of a Security Assertion Markup Language (SAML) 2.0 Bearer Assertion as a means for requesting an OAuth 2.0 access token as well as for client authentication.
RFC7521 - Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants
This specification provides a framework for the use of assertions with OAuth 2.0 in the form of a new client authentication mechanism and a new authorization grant type. Mechanisms are specified for transporting assertions during interactions with a token endpoint; general processing rules are also specified.
RFC7520 - Examples of Protecting Content Using JSON Object Signing and Encryption (JOSE)
This document contains a set of examples using JSON Object Signing and Encryption (JOSE) technology to protect data. These examples present a representative sampling of JSON Web Key (JWK) objects as well as various JSON Web Signature (JWS) and JSON Web Encryption (JWE) results given similar inputs.
RFC7519 - JSON Web Token (JWT)
JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.
RFC7518 - JSON Web Algorithms (JWA)
This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.
RFC7517 - JSON Web Key (JWK)
A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.
RFC7516 - JSON Web Encryption (JWE)
JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries defined by that specification. Related digital signature and Message Authentication Code (MAC) capabilities are described in the separate JSON Web Signature (JWS) specification.
This document defines the 'acct' Uniform Resource Identifier (URI) scheme as a way to identify a user's account at a service provider, irrespective of the particular protocols that can be used to interact with the account.
RFC7564 - PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Application Protocols
Application protocols using Unicode characters in protocol strings need to properly handle such strings in order to enforce internationalization rules for strings placed in various protocol slots (such as addresses and identifiers) and to perform valid comparison operations (e.g., for purposes of authentication or authorization). This document defines a framework enabling application protocols to perform the preparation, enforcement, and comparison of internationalized strings ("PRECIS") in a way that depends on the properties of Unicode characters and thus is agile with respect to versions of Unicode. As a result, this framework provides a more sustainable approach to the handling of internationalized strings than the previous framework, known as Stringprep (RFC 3454). This document obsoletes RFC 3454.
RFC7563 - Extensions to the Proxy Mobile IPv6 (PMIPv6) Access Network Identifier Option
The Access Network Identifier (ANI) mobility option was introduced in RFC 6757, "Access Network Identifier (ANI) Option for Proxy Mobile IPv6". This enables a Mobile Access Gateway (MAG) to convey identifiers like the network identifier, geolocation, and operator identifier. This specification extends the Access Network Identifier mobility option with sub-options to carry the civic location and the MAG group identifier. This specification also defines an ANI Update-Timer sub-option that determines when and how often the ANI option will be updated.
RFC7562 - Transport Layer Security (TLS) Authorization Using Digital Transmission Content Protection (DTCP) Certificates
This document specifies the use of Digital Transmission Content Protection (DTCP) certificates as an authorization data type in the authorization extension for the Transport Layer Security (TLS) protocol. This is in accordance with the guidelines for authorization extensions as specified in RFC 5878. As with other TLS extensions, this authorization data can be included in the client and server hello messages to confirm that both parties support the desired authorization data types. If supported by both the client and the server, DTCP certificates are exchanged in the supplemental data TLS handshake message as specified in RFC 4680. This authorization data type extension is in support of devices containing DTCP certificates issued by the Digital Transmission Licensing Administrator (DTLA).
RFC7561 - Mapping Quality of Service (QoS) Procedures of Proxy Mobile IPv6 (PMIPv6) and WLAN
This document provides guidelines for achieving end-to-end Quality of Service (QoS) in a Proxy Mobile IPv6 (PMIPv6) domain where the access network is based on IEEE 802.11. RFC 7222 describes QoS negotiation between a Mobile Access Gateway (MAG) and Local Mobility Anchor (LMA) in a PMIPv6 mobility domain. The negotiated QoS parameters can be used for QoS policing and marking of packets to enforce QoS differentiation on the path between the MAG and LMA. IEEE 802.11 and Wi-Fi Multimedia - Admission Control (WMM-AC) describe methods for QoS negotiation between a Wi-Fi Station (MN in PMIPv6 terminology) and an Access Point. This document provides a mapping between the above two sets of QoS procedures and the associated QoS parameters. This document is intended to be used as a companion document to RFC 7222 to enable implementation of end-to-end QoS.
RFC7560 - Problem Statement and Requirements for Increased Accuracy in Explicit Congestion Notification (ECN) Feedback
Explicit Congestion Notification (ECN) is a mechanism where network nodes can mark IP packets, instead of dropping them, to indicate congestion to the endpoints. An ECN-capable receiver will feed this information back to the sender. ECN is specified for TCP in such a way that it can only feed back one congestion signal per Round-Trip Time (RTT). In contrast, ECN for other transport protocols, such as RTP/UDP and SCTP, is specified with more accurate ECN feedback. Recent new TCP mechanisms (like Congestion Exposure (ConEx) or Data Center TCP (DCTCP)) need more accurate ECN feedback in the case where more than one marking is received in one RTT. This document specifies requirements for an update to the TCP protocol to provide more accurate ECN feedback.
RFC7559 - Packet-Loss Resiliency for Router Solicitations
When an interface on a host is initialized, the host transmits Router Solicitations in order to minimize the amount of time it needs to wait until the next unsolicited multicast Router Advertisement is received. In certain scenarios, these Router Solicitations transmitted by the host might be lost. This document specifies a mechanism for hosts to cope with the loss of the initial Router Solicitations.
RFC7558 - Requirements for Scalable DNS-Based Service Discovery (DNS-SD) / Multicast DNS (mDNS) Extensions
DNS-based Service Discovery (DNS-SD) over Multicast DNS (mDNS) is widely used today for discovery and resolution of services and names on a local link, but there are use cases to extend DNS-SD/mDNS to enable service discovery beyond the local link. This document provides a problem statement and a list of requirements for scalable DNS-SD.
RFC7557 - Extension Mechanism for the Babel Routing Protocol
This document defines the encoding of extensions to the Babel routing protocol, as specified in RFC 6126.
RFC7556 - Multiple Provisioning Domain Architecture
This document is a product of the work of the Multiple Interfaces Architecture Design team. It outlines a solution framework for some of the issues experienced by nodes that can be attached to multiple networks simultaneously. The framework defines the concept of a Provisioning Domain (PvD), which is a consistent set of network configuration information. PvD-aware nodes learn PvD-specific information from the networks they are attached to and/or other sources. PvDs are used to enable separation and configuration consistency in the presence of multiple concurrent connections.
RFC7555 - Proxy MPLS Echo Request
This document defines a means of remotely initiating Multiprotocol Label Switched Protocol (MPLS) Pings on Label Switched Paths. An MPLS Proxy Ping Request is sent to any Label Switching Router along a Label Switched Path. The primary motivations for this facility are first to limit the number of messages and related processing when using LSP Ping in large Point-to-Multipoint LSPs, and second to enable tracing from leaf to leaf (or root).
RFC7554 - Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement
This document describes the environment, problem statement, and goals for using the Time-Slotted Channel Hopping (TSCH) Medium Access Control (MAC) protocol of IEEE 802.14.4e in the context of Low-Power and Lossy Networks (LLNs). The set of goals enumerated in this document form an initial set only.
RFC7553 - The Uniform Resource Identifier (URI) DNS Resource Record
This document describes the already registered DNS resource record (RR) type, called the Uniform Resource Identifier (URI) RR, that is used for publishing mappings from hostnames to URIs.
RFC7552 - Updates to LDP for IPv6
The Label Distribution Protocol (LDP) specification defines procedures to exchange label bindings over either IPv4 or IPv6 networks, or both. This document corrects and clarifies the LDP behavior when an IPv6 network is used (with or without IPv4). This document updates RFCs 5036 and 6720.
RFC7551 - RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)
This document describes Resource Reservation Protocol (RSVP) extensions to bind two point-to-point unidirectional Label Switched Paths (LSPs) into an associated bidirectional LSP. The association is achieved by defining new Association Types for use in ASSOCIATION and in Extended ASSOCIATION Objects. One of these types enables independent provisioning of the associated bidirectional LSPs on both sides, while the other enables single-sided provisioning. The REVERSE_LSP Object is also defined to enable a single endpoint to trigger creation of the reverse LSP and to specify parameters of the reverse LSP in the single-sided provisioning case.
RFC7550 - Issues and Recommendations with Multiple Stateful DHCPv6 Options
The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) specification defined two stateful options, IA_NA and IA_TA, but did not anticipate the development of additional stateful options. DHCPv6 Prefix Delegation added the IA_PD option, which is stateful. Applications that use IA_NA and IA_PD together have revealed issues that need to be addressed. This document updates RFCs 3315 and 3633 to address these issues.
RFC7549 - 3GPP SIP URI Inter-Operator Traffic Leg Parameter
In 3GPP networks, the signaling path between a calling user and a called user can be partitioned into segments, referred to as traffic legs. Each traffic leg may span networks belonging to different operators and will have its own characteristics that can be different from other traffic legs in the same call. A traffic leg might be associated with multiple SIP dialogs, e.g., in case a Back-to-Back User Agent (B2BUA) that modifies the SIP dialog identifier is located within the traffic leg.
RFC7548 - Management of Networks with Constrained Devices: Use Cases
This document discusses use cases concerning the management of networks in which constrained devices are involved. A problem statement, deployment options, and the requirements on the networks with constrained devices can be found in the companion document on "Management of Networks with Constrained Devices: Problem Statement and Requirements" (RFC 7547).
RFC7547 - Management of Networks with Constrained Devices: Problem Statement and Requirements
This document provides a problem statement, deployment and management topology options, as well as requirements addressing the different use cases of the management of networks where constrained devices are involved.
RFC7546 - Structure of the Generic Security Service (GSS) Negotiation Loop
This document specifies the generic structure of the negotiation loop to establish a Generic Security Service (GSS) security context between initiator and acceptor. The control flow of the loop is indicated for both parties, including error conditions, and indications are given for where application-specific behavior must be specified.
RFC7545 - Protocol to Access White-Space (PAWS) Databases
Portions of the radio spectrum that are allocated to licensees are available for non-interfering use. This available spectrum is called "white space". Allowing secondary users access to available spectrum "unlocks" existing spectrum to maximize its utilization and to provide opportunities for innovation, resulting in greater overall spectrum utilization.
RFC7544 - Mapping and Interworking of Diversion Information between Diversion and History-Info Header Fields in the Session Initiation Protocol (SIP)
Although the SIP History-Info header field described in RFC 7044 is the solution adopted in IETF, the non-standard Diversion header field described, as Historic, in RFC 5806 is nevertheless already implemented and used for conveying call-diversion-related information in Session Initiation Protocol (SIP) signaling.
RFC7543 - Covering Prefixes Outbound Route Filter for BGP-4
This document defines a new Outbound Route Filter (ORF) type, called the Covering Prefixes ORF (CP-ORF). CP-ORF is applicable in Virtual Hub-and-Spoke VPNs. It also is applicable in BGP/MPLS Ethernet VPN (EVPN) networks.
RFC7542 - The Network Access Identifier
In order to provide inter-domain authentication services, it is necessary to have a standardized method that domains can use to identify each other's users. This document defines the syntax for the Network Access Identifier (NAI), the user identifier submitted by the client prior to accessing resources. This document is a revised version of RFC 4282. It addresses issues with international character sets and makes a number of other corrections to RFC 4282.
RFC7541 - HPACK: Header Compression for HTTP/2
This specification defines HPACK, a compression format for efficiently representing HTTP header fields, to be used in HTTP/2.
RFC7540 - Hypertext Transfer Protocol Version 2 (HTTP/2)
This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of representations from servers to clients.
RFC7539 - ChaCha20 and Poly1305 for IETF Protocols
This document defines the ChaCha20 stream cipher as well as the use of the Poly1305 authenticator, both as stand-alone algorithms and as a "combined mode", or Authenticated Encryption with Associated Data (AEAD) algorithm.
RFC7538 - The Hypertext Transfer Protocol Status Code 308 (Permanent Redirect)
This document specifies the additional Hypertext Transfer Protocol (HTTP) status code 308 (Permanent Redirect).
RFC7537 - IANA Registries for LSP Ping Code Points
RFCs 4379 and 6424 created name spaces for Multi-Protocol Label Switching (MPLS) Label Switched Path (LSP) Ping. However, those RFCs did not create the corresponding IANA registries for Downstream Mapping object Flags (DS Flags), Multipath Types, Pad TLVs, and Interface and Label Stack Address Types.
RFC7536 - Large-Scale Broadband Measurement Use Cases
Measuring broadband performance on a large scale is important for network diagnostics by providers and users, as well as for public policy. Understanding the various scenarios and users of measuring broadband performance is essential to development of the Large-scale Measurement of Broadband Performance (LMAP) framework, information model, and protocol. This document details two use cases that can assist in developing that framework. The details of the measurement metrics themselves are beyond the scope of this document.
RFC7535 - AS112 Redirection Using DNAME
AS112 provides a mechanism for handling reverse lookups on IP addresses that are not unique (e.g., RFC 1918 addresses). This document describes modifications to the deployment and use of AS112 infrastructure that will allow zones to be added and dropped much more easily, using DNAME resource records.
RFC7534 - AS112 Nameserver Operations
Many sites connected to the Internet make use of IPv4 addresses that are not globally unique. Examples are the addresses designated in RFC 1918 for private use within individual sites.
RFC7533 - Administration Protocol for Federated File Systems
This document describes the administration protocol for a federated file system (FedFS) that enables file access and namespace traversal across collections of independently administered fileservers. The protocol specifies a set of interfaces by which fileservers with different administrators can form a fileserver federation that provides a namespace composed of the file systems physically hosted on and exported by the constituent fileservers.
RFC7532 - Namespace Database (NSDB) Protocol for Federated File Systems
This document describes a file system federation protocol that enables file access and namespace traversal across collections of independently administered fileservers. The protocol specifies a set of interfaces by which fileservers with different administrators can form a fileserver federation that provides a namespace composed of the file systems physically hosted on and exported by the constituent fileservers.
RFC7531 - Network File System (NFS) Version 4 External Data Representation Standard (XDR) Description
The Network File System (NFS) version 4 protocol is a distributed file system protocol that owes its heritage to NFS protocol version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the MOUNT protocol. In addition, support for strong security (and its negotiation), COMPOUND operations, client caching, and internationalization has been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment.
RFC7530 - Network File System (NFS) Version 4 Protocol
The Network File System (NFS) version 4 protocol is a distributed file system protocol that builds on the heritage of NFS protocol version 2 (RFC 1094) and version 3 (RFC 1813). Unlike earlier versions, the NFS version 4 protocol supports traditional file access while integrating support for file locking and the MOUNT protocol. In addition, support for strong security (and its negotiation), COMPOUND operations, client caching, and internationalization has been added. Of course, attention has been applied to making NFS version 4 operate well in an Internet environment.
RFC7529 - Non-Gregorian Recurrence Rules in the Internet Calendaring and Scheduling Core Object Specification (iCalendar)
This document defines extensions to the Internet Calendaring and Scheduling Core Object Specification (iCalendar) (RFC 5545) to support use of non-Gregorian recurrence rules. It also defines how Calendaring Extensions to WebDAV (CalDAV) (RFC 4791) servers and clients can be extended to support these new recurrence rules.
RFC7528 - A Uniform Resource Name (URN) Namespace for the Hybrid Broadcast Broadband TV (HbbTV) Association
This document describes a Uniform Resource Name (URN) namespace for the Hybrid Broadcast Broadband TV (HbbTV) Association for naming persistent resources defined within HbbTV specifications. Example resources include technical documents and specifications, Extensible Markup Language (XML) Schemas, classification schemes, XML Document Type Definitions (DTDs), namespaces, style sheets, media assets, and other types of resources produced or managed by HbbTV.
RFC7527 - Enhanced Duplicate Address Detection
IPv6 Loopback Suppression and Duplicate Address Detection (DAD) are discussed in Appendix A of RFC 4862. That specification mentions a hardware-assisted mechanism to detect looped back DAD messages. If hardware cannot suppress looped back DAD messages, a software solution is required. Several service provider communities have expressed a need for automated detection of looped back Neighbor Discovery (ND) messages used by DAD. This document includes mitigation techniques and outlines the Enhanced DAD algorithm to automate the detection of looped back IPv6 ND messages used by DAD. For network loopback tests, the Enhanced DAD algorithm allows IPv6 to self-heal after a loopback is placed and removed. Further, for certain access networks, this document automates resolving a specific duplicate address conflict. This document updates RFCs 4429, 4861, and 4862.
RFC7526 - Deprecating the Anycast Prefix for 6to4 Relay Routers
Experience with the 6to4 transition mechanism defined in RFC 3056 ("Connection of IPv6 Domains via IPv4 Clouds") has shown that the mechanism is unsuitable for widespread deployment and use in the Internet when used in its anycast mode. Therefore, this document requests that RFC 3068 ("An Anycast Prefix for 6to4 Relay Routers") and RFC 6732 ("6to4 Provider Managed Tunnels") be made obsolete and moved to Historic status. It recommends that future products should not support 6to4 anycast and that existing deployments should be reviewed. This complements the guidelines in RFC 6343.
RFC7525 - Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.
RFC7524 - Inter-Area Point-to-Multipoint (P2MP) Segmented Label Switched Paths (LSPs)
This document describes procedures for building inter-area point-to-multipoint (P2MP) segmented service label switched paths (LSPs) by partitioning such LSPs into intra-area segments and using BGP as the inter-area routing and Label Distribution Protocol (LDP). Within each IGP area, the intra-area segments are either carried over intra-area P2MP LSPs, using P2MP LSP hierarchy, or instantiated using ingress replication. The intra-area P2MP LSPs may be signaled using P2MP RSVP-TE or P2MP multipoint LDP (mLDP). If ingress replication is used within an IGP area, then (multipoint-to-point) LDP LSPs or (point-to-point) RSVP-TE LSPs may be used in the IGP area. The applications/services that use such inter-area service LSPs may be BGP Multicast VPN, Virtual Private LAN Service (VPLS) multicast, or global table multicast over MPLS.
RFC7523 - JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
This specification defines the use of a JSON Web Token (JWT) Bearer Token as a means for requesting an OAuth 2.0 access token as well as for client authentication.
RFC7522 - Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication and Authorization Grants
This specification defines the use of a Security Assertion Markup Language (SAML) 2.0 Bearer Assertion as a means for requesting an OAuth 2.0 access token as well as for client authentication.
RFC7521 - Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants
This specification provides a framework for the use of assertions with OAuth 2.0 in the form of a new client authentication mechanism and a new authorization grant type. Mechanisms are specified for transporting assertions during interactions with a token endpoint; general processing rules are also specified.
RFC7520 - Examples of Protecting Content Using JSON Object Signing and Encryption (JOSE)
This document contains a set of examples using JSON Object Signing and Encryption (JOSE) technology to protect data. These examples present a representative sampling of JSON Web Key (JWK) objects as well as various JSON Web Signature (JWS) and JSON Web Encryption (JWE) results given similar inputs.
RFC7519 - JSON Web Token (JWT)
JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.
RFC7518 - JSON Web Algorithms (JWA)
This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.
RFC7517 - JSON Web Key (JWK)
A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.
RFC7516 - JSON Web Encryption (JWE)
JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries defined by that specification. Related digital signature and Message Authentication Code (MAC) capabilities are described in the separate JSON Web Signature (JWS) specification.