RFC4941: Privacy Extensions for Stateless Address Autoconfiguration in IPv6
Download in PDF format Download in text format
Obsoletes:
RFC3041
Obsoleted By:
RFC8981
Network Working Group T. Narten Request for Comments: 4941 IBM Corporation Obsoletes: 3041 R. Draves Category: Standards Track Microsoft Research S. Krishnan Ericsson Research September 2007 Privacy Extensions for Stateless Address Autoconfiguration in IPv6 Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Abstract Nodes use IPv6 stateless address autoconfiguration to generate addresses using a combination of locally available information and information advertised by routers. Addresses are formed by combining network prefixes with an interface identifier. On an interface that contains an embedded IEEE Identifier, the interface identifier is typically derived from it. On other interface types, the interface identifier is generated through other means, for example, via random number generation. This document describes an extension to IPv6 stateless address autoconfiguration for interfaces whose interface identifier is derived from an IEEE identifier. Use of the extension causes nodes to generate global scope addresses from interface identifiers that change over time, even in cases where the interface contains an embedded IEEE identifier. Changing the interface identifier (and the global scope addresses generated from it) over time makes it more difficult for eavesdroppers and other information collectors to identify when different addresses used in different transactions actually correspond to the same node. Narten, et al. Standards Track [Page 1] RFC 4941 Privacy Extensions to Autoconf September 2007 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Conventions Used in This Document . . . . . . . . . . . . 4 1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . 4 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1. Extended Use of the Same Identifier . . . . . . . . . . . 5 2.2. Address Usage in IPv4 Today . . . . . . . . . . . . . . . 6 2.3. The Concern with IPv6 Addresses . . . . . . . . . . . . . 7 2.4. Possible Approaches . . . . . . . . . . . . . . . . . . . 8 3. Protocol Description . . . . . . . . . . . . . . . . . . . . . 9 3.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . 10 3.2. Generation of Randomized Interface Identifiers . . . . . . 10 3.2.1. When Stable Storage Is Present . . . . . . . . . . . . 11 3.2.2. In The Absence of Stable Storage . . . . . . . . . . . 12 3.2.3. Alternate Approaches . . . . . . . . . . . . . . . . . 12 3.3. Generating Temporary Addresses . . . . . . . . . . . . . . 13 3.4. Expiration of Temporary Addresses . . . . . . . . . . . . 14 3.5. Regeneration of Randomized Interface Identifiers . . . . . 15 3.6. Deployment Considerations . . . . . . . . . . . . . . . . 16 4. Implications of Changing Interface Identifiers . . . . . . . . 17 5. Defined Constants . . . . . . . . . . . . . . . . . . . . . . 18 6. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 18 7. Security Considerations . . . . . . . . . . . . . . . . . . . 19 8. Significant Changes from RFC 3041 . . . . . . . . . . . . . . 19 9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 20 10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 20 10.1. Normative References . . . . . . . . . . . . . . . . . . . 20 10.2. Informative References . . . . . . . . . . . . . . . . . . 20 Narten, et al. Standards Track [Page 2] RFC 4941 Privacy Extensions to Autoconf September 2007 1. Introduction Stateless address autoconfiguration [ADDRCONF] defines how an IPv6 node generates addresses without the need for a Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server. Some types of network interfaces come with an embedded IEEE Identifier (i.e., a link-layer MAC address), and in those cases, stateless address autoconfiguration uses the IEEE identifier to generate a 64-bit interface identifier [ADDRARCH]. By design, the interface identifier is likely to be globally unique when generated in this fashion. The interface identifier is in turn appended to a prefix to form a 128-bit IPv6 address. Note that an IPv6 identifier does not necessarily have to be 64 bits in length, but the algorithm specified in this document is targeted towards 64-bit interface identifiers. All nodes combine interface identifiers (whether derived from an IEEE identifier or generated through some other technique) with the reserved link-local prefix to generate link-local addresses for their attached interfaces. Additional addresses can then be created by combining prefixes advertised in Router Advertisements via Neighbor Discovery [DISCOVERY] with the interface identifier. Not all nodes and interfaces contain IEEE identifiers. In such cases, an interface identifier is generated through some other means (e.g., at random), and the resultant interface identifier may not be globally unique and may also change over time. The focus of this document is on addresses derived from IEEE identifiers because tracking of individual devices, the concern being addressed here, is possible only in those cases where the interface identifier is globally unique and non-changing. The rest of this document assumes that IEEE identifiers are being used, but the techniques described may also apply to interfaces with other types of globally unique and/or persistent identifiers. This document discusses concerns associated with the embedding of non-changing interface identifiers within IPv6 addresses and describes extensions to stateless address autoconfiguration that can help mitigate those concerns for individual users and in environments where such concerns are significant. Section 2 provides background information on the issue. Section 3 describes a procedure for generating alternate interface identifiers and global scope addresses. Section 4 discusses implications of changing interface identifiers. The term "global scope addresses" is used in this document to collectively refer to "Global unicast addresses" as defined in [ADDRARCH] and "Unique local addresses" as defined in [ULA]. Narten, et al. Standards Track [Page 3] RFC 4941 Privacy Extensions to Autoconf September 2007 1.1. Conventions Used in This Document The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. 1.2. Problem Statement Addresses generated using stateless address autoconfiguration [ADDRCONF] contain an embedded interface identifier, which remains constant over time. Anytime a fixed identifier is used in multiple contexts, it becomes possible to correlate seemingly unrelated activity using this identifier. The correlation can be performed by o An attacker who is in the path between the node in question and the peer(s) to which it is communicating, and who can view the IPv6 addresses present in the datagrams. o An attacker who can access the communication logs of the peers with which the node has communicated. Since the identifier is embedded within the IPv6 address, which is a fundamental requirement of communication, it cannot be easily hidden. This document proposes a solution to this issue by generating interface identifiers that vary over time. Note that an attacker, who is on path, may be able to perform significant correlation based on o The payload contents of the packets on the wire o The characteristics of the packets such as packet size and timing Use of temporary addresses will not prevent such payload-based correlation. Narten, et al. Standards Track [Page 4] RFC 4941 Privacy Extensions to Autoconf September 2007 2. Background This section discusses the problem in more detail, provides context for evaluating the significance of the concerns in specific environments and makes comparisons with existing practices. 2.1. Extended Use of the Same Identifier The use of a non-changing interface identifier to form addresses is a specific instance of the more general case where a constant identifier is reused over an extended period of time and in multiple independent activities. Any time the same identifier is used in multiple contexts, it becomes possible for that identifier to be used to correlate seemingly unrelated activity. For example, a network sniffer placed strategically on a link across which all traffic to/ from a particular host crosses could keep track of which destinations a node communicated with and at what times. Such information can in some cases be used to infer things, such as what hours an employee was active, when someone is at home, etc. Although it might appear that changing an address regularly in such environments would be desirable to lessen privacy concerns, it should be noted that the network prefix portion of an address also serves as a constant identifier. All nodes at, say, a home, would have the same network prefix, which identifies the topological location of those nodes. This has implications for privacy, though not at the same granularity as the concern that this document addresses. Specifically, all nodes within a home could be grouped together for the purposes of collecting information. If the network contains a very small number of nodes, say, just one, changing just the interface identifier will not enhance privacy at all, since the prefix serves as a constant identifier. One of the requirements for correlating seemingly unrelated activities is the use (and reuse) of an identifier that is recognizable over time within different contexts. IP addresses provide one obvious example, but there are more. Many nodes also have DNS names associated with their addresses, in which case the DNS name serves as a similar identifier. Although the DNS name associated with an address is more work to obtain (it may require a DNS query), the information is often readily available. In such cases, changing the address on a machine over time would do little to address the concerns raised in this document, unless the DNS name is changed as well (see Section 4). Web browsers and servers typically exchange "cookies" with each other [COOKIES]. Cookies allow Web servers to correlate a current activity with a previous activity. One common usage is to send back targeted advertising to a user by using the cookie supplied by the browser to Narten, et al. Standards Track [Page 5] RFC 4941 Privacy Extensions to Autoconf September 2007 identify what earlier queries had been made (e.g., for what type of information). Based on the earlier queries, advertisements can be targeted to match the (assumed) interests of the end user. The use of a constant identifier within an address is of special concern because addresses are a fundamental requirement of communication and cannot easily be hidden from eavesdroppers and other parties. Even when higher layers encrypt their payloads, addresses in packet headers appear in the clear. Consequently, if a mobile host (e.g., laptop) accessed the network from several different locations, an eavesdropper might be able to track the movement of that mobile host from place to place, even if the upper layer payloads were encrypted. 2.2. Address Usage in IPv4 Today Addresses used in today's Internet are often non-changing in practice for extended periods of time. In an increasing number of sites, addresses are assigned statically and typically change infrequently. Over the last few years, sites have begun moving away from static allocation to dynamic allocation via DHCP [DHCP]. In theory, the address a client gets via DHCP can change over time, but in practice servers often return the same address to the same client (unless addresses are in such short supply that they are reused immediately by a different node when they become free). Thus, even within sites using DHCP, clients frequently end up using the same address for weeks to months at a time. For home users accessing the Internet over dial-up lines, the situation is generally different. Such users do not have permanent connections and are often assigned temporary addresses each time they connect to their ISP. Consequently, the addresses they use change frequently over time and are shared among a number of different users. Thus, an address does not reliably identify a particular device over time spans of more than a few minutes. A more interesting case concerns always-on connections (e.g., cable modems, ISDN, DSL, etc.) that result in a home site using the same address for extended periods of time. This is a scenario that is just starting to become common in IPv4 and promises to become more of a concern as always-on Internet connectivity becomes widely available. Finally, it should be noted that nodes that need a (non-changing) DNS name generally have static addresses assigned to them to simplify the configuration of DNS servers. Although Dynamic DNS [DDNS] can be used to update the DNS dynamically, it may not always be available depending on the administrative policy. In addition, changing an Narten, et al. Standards Track [Page 6] RFC 4941 Privacy Extensions to Autoconf September 2007 address but keeping the same DNS name does not really address the underlying concern, since the DNS name becomes a non-changing identifier. Servers generally require a DNS name (so clients can connect to them), and clients often do as well (e.g., some servers refuse to speak to a client whose address cannot be mapped into a DNS name that also maps back into the same address). Section 4 describes one approach to this issue. 2.3. The Concern with IPv6 Addresses The division of IPv6 addresses into distinct topology and interface identifier portions raises an issue new to IPv6 in that a fixed portion of an IPv6 address (i.e., the interface identifier) can contain an identifier that remains constant even when the topology portion of an address changes (e.g., as the result of connecting to a different part of the Internet). In IPv4, when an address changes, the entire address (including the local part of the address) usually changes. It is this new issue that this document addresses. If addresses are generated from an interface identifier, a home user's address could contain an interface identifier that remains the same from one dial-up session to the next, even if the rest of the address changes. The way PPP is used today, however, PPP servers typically unilaterally inform the client what address they are to use (i.e., the client doesn't generate one on its own). This practice, if continued in IPv6, would avoid the concerns that are the focus of this document. A more troubling case concerns mobile devices (e.g., laptops, PDAs, etc.) that move topologically within the Internet. Whenever they move, they form new addresses for their current topological point of attachment. This is typified today by the "road warrior" who has Internet connectivity both at home and at the office. While the node's address changes as it moves, the interface identifier contained within the address remains the same (when derived from an IEEE Identifier). In such cases, the interface identifier can be used to track the movement and usage of a particular machine. For example, a server that logs usage information together with source addresses, is also recording the interface identifier since it is embedded within an address. Consequently, any data-mining technique that correlates activity based on addresses could easily be extended to do the same using the interface identifier. This is of particular concern with the expected proliferation of next-generation network- connected devices (e.g., PDAs, cell phones, etc.) in which large numbers of devices are, in practice, associated with individual users (i.e., not shared). Thus, the interface identifier embedded within an address could be used to track activities of an individual, even as they move topologically within the Internet. Narten, et al. Standards Track [Page 7] RFC 4941 Privacy Extensions to Autoconf September 2007 In summary, IPv6 addresses on a given interface generated via Stateless Autoconfiguration contain the same interface identifier, regardless of where within the Internet the device connects. This facilitates the tracking of individual devices (and thus, potentially, users). The purpose of this document is to define mechanisms that eliminate this issue in those situations where it is a concern. 2.4. Possible Approaches One way to avoid having a static non-changing address is to use DHCPv6 [DHCPV6] for obtaining addresses. Section 12 of [DHCPV6] discusses the use of DHCPv6 for the assignment and management of "temporary addresses", which are never renewed and provide the same property of temporary addresses described in this document with regards to the privacy concern. Another approach, compatible with the stateless address autoconfiguration architecture, would be to change the interface identifier portion of an address over time and generate new addresses from the interface identifier for some address scopes. Changing the interface identifier can make it more difficult to look at the IP addresses in independent transactions and identify which ones actually correspond to the same node, both in the case where the routing prefix portion of an address changes and when it does not. Many machines function as both clients and servers. In such cases, the machine would need a DNS name for its use as a server. Whether the address stays fixed or changes has little privacy implication since the DNS name remains constant and serves as a constant identifier. When acting as a client (e.g., initiating communication), however, such a machine may want to vary the addresses it uses. In such environments, one may need multiple addresses: a "public" (i.e., non-secret) server address, registered in the DNS, that is used to accept incoming connection requests from other machines, and a "temporary" address used to shield the identity of the client when it initiates communication. These two cases are roughly analogous to telephone numbers and caller ID, where a user may list their telephone number in the public phone book, but disable the display of its number via caller ID when initiating calls. To make it difficult to make educated guesses as to whether two different interface identifiers belong to the same node, the algorithm for generating alternate identifiers must include input that has an unpredictable component from the perspective of the outside entities that are collecting information. Picking identifiers from a pseudo-random sequence suffices, so long as the specific sequence cannot be determined by an outsider examining Narten, et al. Standards Track [Page 8] RFC 4941 Privacy Extensions to Autoconf September 2007 information that is readily available or easily determinable (e.g., by examining packet contents). This document proposes the generation of a pseudo-random sequence of interface identifiers via an MD5 hash. Periodically, the next interface identifier in the sequence is generated, a new set of temporary addresses is created, and the previous temporary addresses are deprecated to discourage their further use. The precise pseudo-random sequence depends on both a random component and the globally unique interface identifier (when available), to increase the likelihood that different nodes generate different sequences. 3. Protocol Description The goal of this section is to define procedures that: 1. Do not result in any changes to the basic behavior of addresses generated via stateless address autoconfiguration [ADDRCONF]. 2. Create additional addresses based on a random interface identifier for the purpose of initiating outgoing sessions. These "random" or temporary addresses would be used for a short period of time (hours to days) and would then be deprecated. Deprecated address can continue to be used for already established connections, but are not used to initiate new connections. New temporary addresses are generated periodically to replace temporary addresses that expire, with the exact time between address generation a matter of local policy. 3. Produce a sequence of temporary global scope addresses from a sequence of interface identifiers that appear to be random in the sense that it is difficult for an outside observer to predict a future address (or identifier) based on a current one, and it is difficult to determine previous addresses (or identifiers) knowing only the present one. 4. By default, generate a set of addresses from the same (randomized) interface identifier, one address for each prefix for which a global address has been generated via stateless address autoconfiguration. Using the same interface identifier to generate a set of temporary addresses reduces the number of IP multicast groups a host must join. Nodes join the solicited-node multicast address for each unicast address they support, and solicited-node addresses are dependent only on the low-order bits of the corresponding address. This default behavior was made to address the concern that a node that joins a large number of multicast groups may be required to put its interface into promiscuous mode, resulting in possible reduced performance. Narten, et al. Standards Track [Page 9] RFC 4941 Privacy Extensions to Autoconf September 2007 A node highly concerned about privacy MAY use different interface identifiers on different prefixes, resulting in a set of global addresses that cannot be easily tied to each other. For example a node MAY create different interface identifiers I1, I2, and I3 for use with different prefixes P1, P2, and P3 on the same interface. 3.1. Assumptions The following algorithm assumes that each interface maintains an associated randomized interface identifier. When temporary addresses are generated, the current value of the associated randomized interface identifier is used. While the same identifier can be used to create more than one temporary address, the value SHOULD change over time as described in Section 3.5. The algorithm also assumes that, for a given temporary address, an implementation can determine the prefix from which it was generated. When a temporary address is deprecated, a new temporary address is generated. The specific valid and preferred lifetimes for the new address are dependent on the corresponding lifetime values set for the prefix from which it was generated. Finally, this document assumes that when a node initiates outgoing communication, temporary addresses can be given preference over public addresses when the device is configured to do so. [ADDR_SELECT] mandates implementations to provide a mechanism, which allows an application to configure its preference for temporary addresses over public addresses. It also allows for an implementation to prefer temporary addresses by default, so that the connections initiated by the node can use temporary addresses without requiring application-specific enablement. This document also assumes that an API will exist that allows individual applications to indicate whether they prefer to use temporary or public addresses and override the system defaults. 3.2. Generation of Randomized Interface Identifiers We describe two approaches for the generation and maintenance of the randomized interface identifier. The first assumes the presence of stable storage that can be used to record state history for use as input into the next iteration of the algorithm across system restarts. A second approach addresses the case where stable storage is unavailable and there is a need to generate randomized interface identifiers without previous state. Narten, et al. Standards Track [Page 10] RFC 4941 Privacy Extensions to Autoconf September 2007 The random interface identifier generation algorithm, as described in this document, uses MD5 as the hash algorithm. The node MAY use another algorithm instead of MD5 to produce the random interface identifier. 3.2.1. When Stable Storage Is Present The following algorithm assumes the presence of a 64-bit "history value" that is used as input in generating a randomized interface identifier. The very first time the system boots (i.e., out-of-the- box), a random value SHOULD be generated using techniques that help ensure the initial value is hard to guess [RANDOM]. Whenever a new interface identifier is generated, a value generated by the computation is saved in the history value for the next iteration of the algorithm. A randomized interface identifier is created as follows: 1. Take the history value from the previous iteration of this algorithm (or a random value if there is no previous value) and append to it the interface identifier generated as described in [ADDRARCH]. 2. Compute the MD5 message digest [MD5] over the quantity created in the previous step. 3. Take the leftmost 64-bits of the MD5 digest and set bit 6 (the leftmost bit is numbered 0) to zero. This creates an interface identifier with the universal/local bit indicating local significance only. 4. Compare the generated identifier against a list of reserved interface identifiers and to those already assigned to an address on the local device. In the event that an unacceptable identifier has been generated, the node MUST restart the process at step 1 above, using the rightmost 64 bits of the MD5 digest obtained in step 2 in place of the history value in step 1. 5. Save the generated identifier as the associated randomized interface identifier. 6. Take the rightmost 64-bits of the MD5 digest computed in step 2) and save them in stable storage as the history value to be used in the next iteration of the algorithm. Narten, et al. Standards Track [Page 11] RFC 4941 Privacy Extensions to Autoconf September 2007 MD5 was chosen for convenience, and because its particular properties were adequate to produce the desired level of randomization. The node MAY use another algorithm instead of MD5 to produce the random interface identifier In theory, generating successive randomized interface identifiers using a history scheme as above has no advantages over generating them at random. In practice, however, generating truly random numbers can be tricky. Use of a history value is intended to avoid the particular scenario where two nodes generate the same randomized interface identifier, both detect the situation via DAD, but then proceed to generate identical randomized interface identifiers via the same (flawed) random number generation algorithm. The above algorithm avoids this problem by having the interface identifier (which will often be globally unique) used in the calculation that generates subsequent randomized interface identifiers. Thus, if two nodes happen to generate the same randomized interface identifier, they should generate different ones on the follow-up attempt. 3.2.2. In The Absence of Stable Storage In the absence of stable storage, no history value will be available across system restarts to generate a pseudo-random sequence of interface identifiers. Consequently, the initial history value used above SHOULD be generated at random. A number of techniques might be appropriate. Consult [RANDOM] for suggestions on good sources for obtaining random numbers. Note that even though machines may not have stable storage for storing a history value, they will in many cases have configuration information that differs from one machine to another (e.g., user identity, security keys, serial numbers, etc.). One approach to generating a random initial history value in such cases is to use the configuration information to generate some data bits (which may remain constant for the life of the machine, but will vary from one machine to another), append some random data, and compute the MD5 digest as before. 3.2.3. Alternate Approaches Note that there are other approaches to generate random interface identifiers, albeit with different goals and applicability. One such approach is Cryptographically Generated Addresses (CGAs) [CGA], which generate a random interface identifier based on the public key of the node. The goal of CGAs is to prove ownership of an address and to prevent spoofing and stealing of existing IPv6 addresses. They are used for securing neighbor discovery using [SEND]. The CGA random interface identifier generation algorithm may not be suitable for privacy addresses because of the following properties: Narten, et al. Standards Track [Page 12] RFC 4941 Privacy Extensions to Autoconf September 2007 o It requires the node to have a public key. This means that the node can still be identified by its public key. o The random interface identifier process is computationally intensive and hence discourages frequent regeneration. 3.3. Generating Temporary Addresses [ADDRCONF] describes the steps for generating a link-local address when an interface becomes enabled as well as the steps for generating addresses for other scopes. This document extends [ADDRCONF] as follows. When processing a Router Advertisement with a Prefix Information option carrying a global scope prefix for the purposes of address autoconfiguration (i.e., the A bit is set), the node MUST perform the following steps: 1. Process the Prefix Information Option as defined in [ADDRCONF], either creating a new public address or adjusting the lifetimes of existing addresses, both public and temporary. If a received option will extend the lifetime of a public address, the lifetimes of temporary addresses should be extended, subject to the overall constraint that no temporary addresses should ever remain "valid" or "preferred" for a time longer than (TEMP_VALID_LIFETIME) or (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR), respectively. The configuration variables TEMP_VALID_LIFETIME and TEMP_PREFERRED_LIFETIME correspond to approximate target lifetimes for temporary addresses. 2. One way an implementation can satisfy the above constraints is to associate with each temporary address a creation time (called CREATION_TIME) that indicates the time at which the address was created. When updating the preferred lifetime of an existing temporary address, it would be set to expire at whichever time is earlier: the time indicated by the received lifetime or (CREATION_TIME + TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR). A similar approach can be used with the valid lifetime. 3. When a new public address is created as described in [ADDRCONF], the node SHOULD also create a new temporary address. 4. When creating a temporary address, the lifetime values MUST be derived from the corresponding prefix as follows: * Its Valid Lifetime is the lower of the Valid Lifetime of the public address or TEMP_VALID_LIFETIME. Narten, et al. Standards Track [Page 13] RFC 4941 Privacy Extensions to Autoconf September 2007 * Its Preferred Lifetime is the lower of the Preferred Lifetime of the public address or TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR. 5. A temporary address is created only if this calculated Preferred Lifetime is greater than REGEN_ADVANCE time units. In particular, an implementation MUST NOT create a temporary address with a zero Preferred Lifetime. 6. New temporary addresses MUST be created by appending the interface's current randomized interface identifier to the prefix that was received. 7. The node MUST perform duplicate address detection (DAD) on the generated temporary address. If DAD indicates the address is already in use, the node MUST generate a new randomized interface identifier as described in Section 3.2 above, and repeat the previous steps as appropriate up to TEMP_IDGEN_RETRIES times. If after TEMP_IDGEN_RETRIES consecutive attempts no non-unique address was generated, the node MUST log a system error and MUST NOT attempt to generate temporary addresses for that interface. Note that DAD MUST be performed on every unicast address generated from this randomized interface identifier. 3.4. Expiration of Temporary Addresses When a temporary address becomes deprecated, a new one MUST be generated. This is done by repeating the actions described in Section 3.3, starting at step 3). Note that, except for the transient period when a temporary address is being regenerated, in normal operation at most one temporary address per prefix should be in a non-deprecated state at any given time on a given interface. Note that if a temporary address becomes deprecated as result of processing a Prefix Information Option with a zero Preferred Lifetime, then a new temporary address MUST NOT be generated. To ensure that a preferred temporary address is always available, a new temporary address SHOULD be regenerated slightly before its predecessor is deprecated. This is to allow sufficient time to avoid race conditions in the case where generating a new temporary address is not instantaneous, such as when duplicate address detection must be run. The node SHOULD start the address regeneration process REGEN_ADVANCE time units before a temporary address would actually be deprecated. As an optional optimization, an implementation MAY remove a deprecated temporary address that is not in use by applications or upper layers as detailed in Section 6. Narten, et al. Standards Track [Page 14] RFC 4941 Privacy Extensions to Autoconf September 2007 3.5. Regeneration of Randomized Interface Identifiers The frequency at which temporary addresses changes depends on how a device is being used (e.g., how frequently it initiates new communication) and the concerns of the end user. The most egregious privacy concerns appear to involve addresses used for long periods of time (weeks to months to years). The more frequently an address changes, the less feasible collecting or coordinating information keyed on interface identifiers becomes. Moreover, the cost of collecting information and attempting to correlate it based on interface identifiers will only be justified if enough addresses contain non-changing identifiers to make it worthwhile. Thus, having large numbers of clients change their address on a daily or weekly basis is likely to be sufficient to alleviate most privacy concerns. There are also client costs associated with having a large number of addresses associated with a node (e.g., in doing address lookups, the need to join many multicast groups, etc.). Thus, changing addresses frequently (e.g., every few minutes) may have performance implications. Nodes following this specification SHOULD generate new temporary addresses on a periodic basis. This can be achieved automatically by generating a new randomized interface identifier at least once every (TEMP_PREFERRED_LIFETIME - REGEN_ADVANCE - DESYNC_FACTOR) time units. As described above, generating a new temporary address REGEN_ADVANCE time units before a temporary address becomes deprecated produces addresses with a preferred lifetime no larger than TEMP_PREFERRED_LIFETIME. The value DESYNC_FACTOR is a random value (different for each client) that ensures that clients don't synchronize with each other and generate new addresses at exactly the same time. When the preferred lifetime expires, a new temporary address MUST be generated using the new randomized interface identifier. Because the precise frequency at which it is appropriate to generate new addresses varies from one environment to another, implementations SHOULD provide end users with the ability to change the frequency at which addresses are regenerated. The default value is given in TEMP_PREFERRED_LIFETIME and is one day. In addition, the exact time at which to invalidate a temporary address depends on how applications are used by end users. Thus, the suggested default value of one week (TEMP_VALID_LIFETIME) may not be appropriate in all environments. Implementations SHOULD provide end users with the ability to override both of these default values. Narten, et al. Standards Track [Page 15] RFC 4941 Privacy Extensions to Autoconf September 2007 Finally, when an interface connects to a new link, a new randomized interface identifier SHOULD be generated immediately together with a new set of temporary addresses. If a device moves from one ethernet to another, generating a new set of temporary addresses from a different randomized interface identifier ensures that the device uses different randomized interface identifiers for the temporary addresses associated with the two links, making it more difficult to correlate addresses from the two different links as being from the same node. The node MAY follow any process available to it, to determine that the link change has occurred. One such process is described by Detecting Network Attachment [DNA]. 3.6. Deployment Considerations Devices implementing this specification MUST provide a way for the end user to explicitly enable or disable the use of temporary addresses. In addition, a site might wish to disable the use of temporary addresses in order to simplify network debugging and operations. Consequently, implementations SHOULD provide a way for trusted system administrators to enable or disable the use of temporary addresses. Additionally, sites might wish to selectively enable or disable the use of temporary addresses for some prefixes. For example, a site might wish to disable temporary address generation for "Unique local" [ULA] prefixes while still generating temporary addresses for all other global prefixes. Another site might wish to enable temporary address generation only for the prefixes 2001::/16 and 2002::/16, while disabling it for all other prefixes. To support this behavior, implementations SHOULD provide a way to enable and disable generation of temporary addresses for specific prefix subranges. This per- prefix setting SHOULD override the global settings on the node with respect to the specified prefix subranges. Note that the pre-prefix setting can be applied at any granularity, and not necessarily on a per-subnet basis. The use of temporary addresses may cause unexpected difficulties with some applications. As described below, some servers refuse to accept communications from clients for which they cannot map the IP address into a DNS name. In addition, some applications may not behave robustly if temporary addresses are used and an address expires before the application has terminated, or if it opens multiple sessions, but expects them to all use the same addresses. Consequently, the use of temporary addresses SHOULD be disabled by default in order to minimize potential disruptions. Individual applications, which have specific knowledge about the normal duration of connections, MAY override this as appropriate. Narten, et al. Standards Track [Page 16] RFC 4941 Privacy Extensions to Autoconf September 2007 If a very small number of nodes (say, only one) use a given prefix for extended periods of time, just changing the interface identifier part of the address may not be sufficient to ensure privacy, since the prefix acts as a constant identifier. The procedures described in this document are most effective when the prefix is reasonably non static or is used by a fairly large number of nodes. 4. Implications of Changing Interface Identifiers The IPv6 addressing architecture goes to some lengths to ensure that interface identifiers are likely to be globally unique where easy to do so. The widespread use of temporary addresses may result in a significant fraction of Internet traffic not using addresses in which the interface identifier portion is globally unique. Consequently, usage of the algorithms in this document may complicate providing such a future flexibility, if global uniqueness is necessary. The desires of protecting individual privacy versus the desire to effectively maintain and debug a network can conflict with each other. Having clients use addresses that change over time will make it more difficult to track down and isolate operational problems. For example, when looking at packet traces, it could become more difficult to determine whether one is seeing behavior caused by a single errant machine, or by a number of them. Some servers refuse to grant access to clients for which no DNS name exists. That is, they perform a DNS PTR query to determine the DNS name, and may then also perform an AAAA query on the returned name to verify that the returned DNS name maps back into the address being used. Consequently, clients not properly registered in the DNS may be unable to access some services. As noted earlier, however, a node's DNS name (if non-changing) serves as a constant identifier. The wide deployment of the extension described in this document could challenge the practice of inverse-DNS-based "authentication," which has little validity, though it is widely implemented. In order to meet server challenges, nodes could register temporary addresses in the DNS using random names (for example, a string version of the random address itself). Use of the extensions defined in this document may complicate debugging and other operational troubleshooting activities. Consequently, it may be site policy that temporary addresses should not be used. Consequently, implementations MUST provide a method for the end user or trusted administrator to override the use of temporary addresses. Narten, et al. Standards Track [Page 17] RFC 4941 Privacy Extensions to Autoconf September 2007 5. Defined Constants Constants defined in this document include: TEMP_VALID_LIFETIME -- Default value: 1 week. Users should be able to override the default value. TEMP_PREFERRED_LIFETIME -- Default value: 1 day. Users should be able to override the default value. REGEN_ADVANCE -- 5 seconds MAX_DESYNC_FACTOR -- 10 minutes. Upper bound on DESYNC_FACTOR. DESYNC_FACTOR -- A random value within the range 0 - MAX_DESYNC_FACTOR. It is computed once at system start (rather than each time it is used) and must never be greater than (TEMP_VALID_LIFETIME - REGEN_ADVANCE). TEMP_IDGEN_RETRIES -- Default value: 3 6. Future Work An implementation might want to keep track of which addresses are being used by upper layers so as to be able to remove a deprecated temporary address from internal data structures once no upper layer protocols are using it (but not before). This is in contrast to current approaches where addresses are removed from an interface when they become invalid [ADDRCONF], independent of whether or not upper layer protocols are still using them. For TCP connections, such information is available in control blocks. For UDP-based applications, it may be the case that only the applications have knowledge about what addresses are actually in use. Consequently, an implementation generally will need to use heuristics in deciding when an address is no longer in use. The determination as to whether to use public versus temporary addresses can in some cases only be made by an application. For example, some applications may always want to use temporary addresses, while others may want to use them only in some circumstances or not at all. Suitable API extensions will likely need to be developed to enable individual applications to indicate with sufficient granularity their needs with regards to the use of temporary addresses. Recommendations on DNS practices to avoid the problem described in Section 4 when reverse DNS lookups fail may be needed. [DNSOP] contains a more detailed discussion of the DNS- related issues. Narten, et al. Standards Track [Page 18] RFC 4941 Privacy Extensions to Autoconf September 2007 While this document discusses ways of obscuring a user's permanent IP address, the method described is believed to be ineffective against sophisticated forms of traffic analysis. To increase effectiveness, one may need to consider use of more advanced techniques, such as Onion Routing [ONION]. 7. Security Considerations Ingress filtering has been and is being deployed as a means of preventing the use of spoofed source addresses in Distributed Denial of Service (DDoS) attacks. In a network with a large number of nodes, new temporary addresses are created at a fairly high rate. This might make it difficult for ingress filtering mechanisms to distinguish between legitimately changing temporary addresses and spoofed source addresses, which are "in-prefix" (using a topologically correct prefix and non-existent interface ID). This can be addressed by using access control mechanisms on a per-address basis on the network egress point. 8. Significant Changes from RFC 3041 This section summarizes the changes in this document relative to RFC 3041 that an implementer of RFC 3041 should be aware of. 1. Excluded certain interface identifiers from the range of acceptable interface identifiers. Interface IDs such as those for reserved anycast addresses [RFC2526], etc. 2. Added a configuration knob that provides the end user with a way to enable or disable the use of temporary addresses on a per- prefix basis. 3. Added a check for denial of service attacks using low valid lifetimes in router advertisements. 4. DAD is now run on all temporary addresses, not just the first one generated from an interface identifier. 5. Changed the default setting for usage of temporary addresses to be disabled. 6. The node is now allowed to generate different interface identifiers for different prefixes, if it so desires. 7. The algorithm used for generating random interface identifiers is no longer restricted to just MD5. Narten, et al. Standards Track [Page 19] RFC 4941 Privacy Extensions to Autoconf September 2007 8. Reduced default number of retries to 3 and added a configuration variable. 9. Router advertisement (RA) processing algorithm is no longer included in the document, and is replaced by a reference to [ADDRCONF]. 9. Acknowledgments Rich Draves and Thomas Narten were the authors of RFC 3041. They would like to acknowledge the contributions of the ipv6 working group and, in particular, Ran Atkinson, Matt Crawford, Steve Deering, Allison Mankin, and Peter Bieringer. Suresh Krishnan was the sole author of this version of the document. He would like to acknowledge the contributions of the ipv6 working group and, in particular, Jari Arkko, Pekka Nikander, Pekka Savola, Francis Dupont, Brian Haberman, Tatuya Jinmei, and Margaret Wasserman for their detailed comments. 10. References 10.1. Normative References [ADDRARCH] Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, February 2006. [ADDRCONF] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless Address Autoconfiguration", RFC 4862, September 2007. [DISCOVERY] Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861, September 2007. [MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, March 1997. 10.2. Informative References [ADDR_SELECT] Draves, R., "Default Address Selection for Internet Protocol version 6 (IPv6)", RFC 3484, February 2003. [CGA] Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, March 2005. Narten, et al. Standards Track [Page 20] RFC 4941 Privacy Extensions to Autoconf September 2007 [COOKIES] Kristol, D. and L. Montulli, "HTTP State Management Mechanism", RFC 2965, October 2000. [DDNS] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound, "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136, April 1997. [DHCP] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131, March 1997. [DHCPV6] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003. [DNA] Choi, JH. and G. Daley, "Goals of Detecting Network Attachment in IPv6", RFC 4135, August 2005. [DNSOP] Durand, A., Ihren, J., and P. Savola, "Operational Considerations and Issues with IPv6 DNS", RFC 4472, April 2006. [ONION] Reed, MGR., Syverson, PFS., and DMG. Goldschlag, "Proxies for Anonymous Routing", Proceedings of the 12th Annual Computer Security Applications Conference, San Diego, CA, December 1996. [RANDOM] Eastlake, D., Schiller, J., and S. Crocker, "Randomness Requirements for Security", BCP 106, RFC 4086, June 2005. [RFC2526] Johnson, D. and S. Deering, "Reserved IPv6 Subnet Anycast Addresses", RFC 2526, March 1999. [SEND] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005. [ULA] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast Addresses", RFC 4193, October 2005. Narten, et al. Standards Track [Page 21] RFC 4941 Privacy Extensions to Autoconf September 2007 Authors' Addresses Thomas Narten IBM Corporation P.O. Box 12195 Research Triangle Park, NC USA EMail: narten@us.ibm.com Richard Draves Microsoft Research One Microsoft Way Redmond, WA USA EMail: richdr@microsoft.com Suresh Krishnan Ericsson Research 8400 Decarie Blvd. Town of Mount Royal, QC Canada EMail: suresh.krishnan@ericsson.com Narten, et al. Standards Track [Page 22] RFC 4941 Privacy Extensions to Autoconf September 2007 Full Copyright Statement Copyright (C) The IETF Trust (2007). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Narten, et al. Standards Track [Page 23]