RFC Abstracts
RFC5246 - The Transport Layer Security (TLS) Protocol Version 1.2
This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]
RFC5245 - Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols
This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based multimedia sessions established with the offer/answer model. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN). ICE can be used by any protocol utilizing the offer/answer model, such as the Session Initiation Protocol (SIP). [STANDARDS-TRACK]
RFC5244 - Definition of Events for Channel-Oriented Telephony Signalling
This memo updates RFC 4733 to add event codes for telephony signals used for channel-associated signalling when carried in the telephony event RTP payload. It supersedes and adds to the original assignment of event codes for this purpose in Section 3.14 of RFC 2833. As documented in Appendix A of RFC 4733, some of the RFC 2833 events have been deprecated because their specification was ambiguous, erroneous, or redundant. In fact, the degree of change from Section 3.14 of RFC 2833 is such that implementations of the present document will be fully backward compatible with RFC 2833 implementations only in the case of full ABCD-bit signalling. This document expands and improves the coverage of signalling systems compared to RFC 2833. [STANDARDS-TRACK]
RFC5243 - OSPF Database Exchange Summary List Optimization
This document describes a backward-compatible optimization for the Database Exchange process in OSPFv2 and OSPFv3. In this optimization, a router does not list a Link State Advertisement (LSA) in Database Description packets sent to a neighbor, if the same or a more recent instance of the LSA was listed in a Database Description packet already received from the neighbor. This optimization reduces Database Description overhead by about 50% in large networks. This optimization does not affect synchronization, since it only omits unnecessary information from Database Description packets. This memo provides information for the Internet community.
RFC5242 - A Generalized Unified Character Code: Western European and CJK Sections
Many issues have been identified with the use of general-purpose character sets for internationalized domain names and similar purposes. This memo describes a fully unified coded character set for scripts based on Latin, Greek, Cyrillic, and Chinese (CJK) characters. It is not a complete specification of that character set. This memo provides information for the Internet community.
RFC5241 - Naming Rights in IETF Protocols
This document proposes a new revenue source for the IETF to support standardization activities: protocol field naming rights, i.e., the association of commercial brands with protocol fields. This memo describes a process for assignment of rights and explores some of the issues associated with the process. Individuals or organizations that wish to purchase naming rights for one or more protocol fields are expected to follow this process. This memo provides information for the Internet community.
RFC5240 - Protocol Independent Multicast (PIM) Bootstrap Router MIB
This document defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used for managing the Bootstrap Router (BSR) mechanism for PIM (Protocol Independent Multicast). [STANDARDS-TRACK]
RFC5239 - A Framework for Centralized Conferencing
This document defines the framework for Centralized Conferencing. The framework allows participants using various call signaling protocols, such as SIP, H.323, Jabber, Q.931 or ISDN User Part (ISUP), to exchange media in a centralized unicast conference. The Centralized Conferencing Framework defines logical entities and naming conventions. The framework also outlines a set of conferencing protocols, which are complementary to the call signaling protocols, for building advanced conferencing applications. The framework binds all the defined components together for the benefit of builders of conferencing systems. [STANDARDS-TRACK]
RFC5238 - Datagram Transport Layer Security (DTLS) over the Datagram Congestion Control Protocol (DCCP)
This document specifies the use of Datagram Transport Layer Security (DTLS) over the Datagram Congestion Control Protocol (DCCP). DTLS provides communications privacy for applications that use datagram transport protocols and allows client/server applications to communicate in a way that is designed to prevent eavesdropping and detect tampering or message forgery. DCCP is a transport protocol that provides a congestion-controlled unreliable datagram service. [STANDARDS-TRACK]
RFC5237 - IANA Allocation Guidelines for the Protocol Field
This document revises the IANA guidelines for allocating new Protocol field values in IPv4 header. It modifies the rules specified in RFC 2780 by removing the Expert Review option. The change will also affect the allocation of Next Header field values in IPv6. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
RFC5236 - Improved Packet Reordering Metrics
This document presents two improved metrics for packet reordering, namely, Reorder Density (RD) and Reorder Buffer-occupancy Density (RBD). A threshold is used to clearly define when a packet is considered lost, to bound computational complexity at O(N), and to keep the memory requirement for evaluation independent of N, where N is the length of the packet sequence. RD is a comprehensive metric that captures the characteristics of reordering, while RBD evaluates the sequences from the point of view of recovery from reordering.
RFC5235 - Sieve Email Filtering: Spamtest and Virustest Extensions
The Sieve email filtering language "spamtest", "spamtestplus", and "virustest" extensions permit users to use simple, portable commands for spam and virus tests on email messages. Each extension provides a new test using matches against numeric "scores". It is the responsibility of the underlying Sieve implementation to do the actual checks that result in proper input to the tests. [STANDARDS-TRACK]
RFC5234 - Augmented BNF for Syntax Specifications: ABNF
Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]
RFC5233 - Sieve Email Filtering: Subaddress Extension
On email systems that allow for 'subaddressing' or 'detailed addressing' (e.g., "ken+sieve@example.org"), it is sometimes desirable to make comparisons against these sub-parts of addresses. This document defines an extension to the Sieve Email Filtering Language that allows users to compare against the user and detail sub-parts of an address. [STANDARDS-TRACK]
RFC5232 - Sieve Email Filtering: Imap4flags Extension
Recent discussions have shown that it is desirable to set different IMAP (RFC 3501) flags on message delivery. This can be done, for example, by a Sieve interpreter that works as a part of a Mail Delivery Agent.
RFC5231 - Sieve Email Filtering: Relational Extension
This document describes the RELATIONAL extension to the Sieve mail filtering language defined in RFC 3028. This extension extends existing conditional tests in Sieve to allow relational operators. In addition to testing their content, it also allows for testing of the number of entities in header and envelope fields.
RFC5230 - Sieve Email Filtering: Vacation Extension
This document describes an extension to the Sieve email filtering language for an autoresponder similar to that of the Unix "vacation" command for replying to messages. Various safety features are included to prevent problems such as message loops. [STANDARDS-TRACK]
RFC5229 - Sieve Email Filtering: Variables Extension
In advanced mail filtering rule sets, it is useful to keep state or configuration details across rules. This document updates the Sieve filtering language (RFC 5228) with an extension to support variables. The extension changes the interpretation of strings, adds an action to store data in variables, and supplies a new test so that the value of a string can be examined. [STANDARDS-TRACK]
RFC5228 - Sieve: An Email Filtering Language
This document describes a language for filtering email messages at time of final delivery. It is designed to be implementable on either a mail client or mail server. It is meant to be extensible, simple, and independent of access protocol, mail architecture, and operating system. It is suitable for running on a mail server where users may not be allowed to execute arbitrary programs, such as on black box Internet Message Access Protocol (IMAP) servers, as the base language has no variables, loops, or ability to shell out to external programs. [STANDARDS-TRACK]
RFC5227 - IPv4 Address Conflict Detection
When two hosts on the same link attempt to use the same IPv4 address at the same time (except in rare special cases where this has been arranged by prior coordination), problems ensue for one or both hosts. This document describes (i) a simple precaution that a host can take in advance to help prevent this misconfiguration from happening, and (ii) if this misconfiguration does occur, a simple mechanism by which a host can passively detect, after the fact, that it has happened, so that the host or administrator may respond to rectify the problem. [STANDARDS-TRACK]
RFC5226 - Guidelines for Writing an IANA Considerations Section in RFCs
Many protocols make use of identifiers consisting of constants and other well-known values. Even after a protocol has been defined and deployment has begun, new values may need to be assigned (e.g., for a new option type in DHCP, or a new encryption or authentication transform for IPsec). To ensure that such quantities have consistent values and interpretations across all implementations, their assignment must be administered by a central authority. For IETF protocols, that role is provided by the Internet Assigned Numbers Authority (IANA).
RFC5225 - RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite
This document specifies ROHC (Robust Header Compression) profiles that efficiently compress RTP/UDP/IP (Real-Time Transport Protocol, User Datagram Protocol, Internet Protocol), RTP/UDP-Lite/IP (User Datagram Protocol Lite), UDP/IP, UDP-Lite/IP, IP and ESP/IP (Encapsulating Security Payload) headers.
RFC5224 - Diameter Policy Processing Application
This document describes the need for a new IANA Diameter Command Code to be used in a vendor-specific new application for invocation of Policy Processing (Policy Evaluation, or Evaluation and Enforcement). This application is needed as one of the implementations of the Open Mobile Alliance (OMA) Policy Evaluation, Enforcement and Management (PEEM) enabler, namely for the PEM-1 interface used to send a request/response for Policy Processing. This memo provides information for the Internet community.
RFC5223 - Discovering Location-to-Service Translation (LoST) Servers Using the Dynamic Host Configuration Protocol (DHCP)
The Location-to-Service Translation (LoST) Protocol describes an XML- based protocol for mapping service identifiers and geospatial or civic location information to service contact Uniform Resource Locators (URLs). LoST servers can be located anywhere, but a placement closer to the end host, e.g., in the access network, is desirable. In disaster situations with intermittent network connectivity, such a LoST server placement provides benefits regarding the resiliency of emergency service communication.
RFC5222 - LoST: A Location-to-Service Translation Protocol
This document describes an XML-based protocol for mapping service identifiers and geodetic or civic location information to service contact URIs. In particular, it can be used to determine the location-appropriate Public Safety Answering Point (PSAP) for emergency services. [STANDARDS-TRACK]
RFC5221 - Requirements for Address Selection Mechanisms
There are some problematic cases when using the default address selection mechanism that RFC 3484 defines. This document describes additional requirements that operate with RFC 3484 to solve the problems. This memo provides information for the Internet community.
RFC5220 - Problem Statement for Default Address Selection in Multi-Prefix Environments: Operational Issues of RFC 3484 Default Rules
A single physical link can have multiple prefixes assigned to it. In that environment, end hosts might have multiple IP addresses and be required to use them selectively. RFC 3484 defines default source and destination address selection rules and is implemented in a variety of OSs. But, it has been too difficult to use operationally for several reasons. In some environments where multiple prefixes are assigned on a single physical link, the host using the default address selection rules will experience some trouble in communication. This document describes the possible problems that end hosts could encounter in an environment with multiple prefixes. This memo provides information for the Internet community.
RFC5219 - A More Loss-Tolerant RTP Payload Format for MP3 Audio
This document describes an RTP (Real-Time Protocol) payload format for transporting MPEG (Moving Picture Experts Group) 1 or 2, layer III audio (commonly known as "MP3"). This format is an alternative to that described in RFC 2250, and performs better if there is packet loss. This document obsoletes RFC 3119, correcting typographical errors in the "SDP usage" section and pseudo-code appendices. [STANDARDS-TRACK]
RFC5218 - What Makes for a Successful Protocol?
The Internet community has specified a large number of protocols to date, and these protocols have achieved varying degrees of success. Based on case studies, this document attempts to ascertain factors that contribute to or hinder a protocol's success. It is hoped that these observations can serve as guidance for future protocol work. This memo provides information for the Internet community.
RFC5217 - Memorandum for Multi-Domain Public Key Infrastructure Interoperability
The objective of this document is to establish a terminology framework and to suggest the operational requirements of Public Key Infrastructure (PKI) domain for interoperability of multi-domain Public Key Infrastructure, where each PKI domain is operated under a distinct policy. This document describes the relationships between Certification Authorities (CAs), provides the definition and requirements for PKI domains, and discusses typical models of multi-domain PKI. This memo provides information for the Internet community.
RFC5216 - The EAP-TLS Authentication Protocol
The Extensible Authentication Protocol (EAP), defined in RFC 3748, provides support for multiple authentication methods. Transport Layer Security (TLS) provides for mutual authentication, integrity-protected ciphersuite negotiation, and key exchange between two endpoints. This document defines EAP-TLS, which includes support for certificate-based mutual authentication and key derivation.
RFC5215 - RTP Payload Format for Vorbis Encoded Audio
This document describes an RTP payload format for transporting Vorbis encoded audio. It details the RTP encapsulation mechanism for raw Vorbis data and the delivery mechanisms for the decoder probability model (referred to as a codebook), as well as other setup information.
RFC5214 - Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
The Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) connects dual-stack (IPv6/IPv4) nodes over IPv4 networks. ISATAP views the IPv4 network as a link layer for IPv6 and supports an automatic tunneling abstraction similar to the Non-Broadcast Multiple Access (NBMA) model. This memo provides information for the Internet community.
RFC5213 - Proxy Mobile IPv6
Network-based mobility management enables IP mobility for a host without requiring its participation in any mobility-related signaling. The network is responsible for managing IP mobility on behalf of the host. The mobility entities in the network are responsible for tracking the movements of the host and initiating the required mobility signaling on its behalf. This specification describes a network-based mobility management protocol and is referred to as Proxy Mobile IPv6. [STANDARDS-TRACK]
RFC5212 - Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/MLN)
Most of the initial efforts to utilize Generalized MPLS (GMPLS) have been related to environments hosting devices with a single switching capability. The complexity raised by the control of such data planes is similar to that seen in classical IP/MPLS networks. By extending MPLS to support multiple switching technologies, GMPLS provides a comprehensive framework for the control of a multi-layered network of either a single switching technology or multiple switching technologies.
RFC5211 - An Internet Transition Plan
This memo provides one possible plan for transitioning the Internet from a predominantly IPv4-based connectivity model to a predominantly IPv6-based connectivity model. This memo provides information for the Internet community.
RFC5210 - A Source Address Validation Architecture (SAVA) Testbed and Deployment Experience
Because the Internet forwards packets according to the IP destination address, packet forwarding typically takes place without inspection of the source address and malicious attacks have been launched using spoofed source addresses. In an effort to enhance the Internet with IP source address validation, a prototype implementation of the IP Source Address Validation Architecture (SAVA) was created and an evaluation was conducted on an IPv6 network. This document reports on the prototype implementation and the test results, as well as the lessons and insights gained from experimentation. This memo defines an Experimental Protocol for the Internet community.
RFC5209 - Network Endpoint Assessment (NEA): Overview and Requirements
This document defines the problem statement, scope, and protocol requirements between the components of the NEA (Network Endpoint Assessment) reference model. NEA provides owners of networks (e.g., an enterprise offering remote access) a mechanism to evaluate the posture of a system. This may take place during the request for network access and/or subsequently at any time while connected to the network. The learned posture information can then be applied to a variety of compliance-oriented decisions. The posture information is frequently useful for detecting systems that are lacking or have out-of-date security protection mechanisms such as: anti-virus and host-based firewall software. In order to provide context for the requirements, a reference model and terminology are introduced. This memo provides information for the Internet community.
RFC5208 - Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification Version 1.2
This document represents a republication of PKCS #8 v1.2 from RSA Laboratories' Public Key Cryptography Standard (PKCS) series. Change control is transferred to the IETF. The body of this document, except for the security considerations section, is taken directly from the PKCS #8 v1.2 specification.
RFC5207 - NAT and Firewall Traversal Issues of Host Identity Protocol (HIP) Communication
The Host Identity Protocol (HIP) changes the way in which two Internet hosts communicate. One key advantage over other schemes is that HIP does not require modifications to the traditional network- layer functionality of the Internet, i.e., its routers. In the current Internet, however, many devices other than routers modify the traditional network-layer behavior of the Internet. These "middleboxes" are intermediary devices that perform functions other than the standard functions of an IP router on the datagram path between source and destination hosts. Whereas some types of middleboxes may not interfere with HIP at all, others can affect some aspects of HIP communication, and others can render HIP communication impossible. This document discusses the problems associated with HIP communication across network paths that include specific types of middleboxes, namely, network address translators and firewalls. It identifies and discusses issues in the current HIP specifications that affect communication across these types of middleboxes. This document is a product of the IRTF HIP Research Group. This memo provides information for the Internet community.
RFC5206 - End-Host Mobility and Multihoming with the Host Identity Protocol
This document defines mobility and multihoming extensions to the Host Identity Protocol (HIP). Specifically, this document defines a general "LOCATOR" parameter for HIP messages that allows for a HIP host to notify peers about alternate addresses at which it may be reached. This document also defines elements of procedure for mobility of a HIP host -- the process by which a host dynamically changes the primary locator that it uses to receive packets. While the same LOCATOR parameter can also be used to support end-host multihoming, detailed procedures are left for further study. This memo defines an Experimental Protocol for the Internet community.
RFC5205 - Host Identity Protocol (HIP) Domain Name System (DNS) Extensions
This document specifies a new resource record (RR) for the Domain Name System (DNS), and how to use it with the Host Identity Protocol (HIP). This RR allows a HIP node to store in the DNS its Host Identity (HI, the public component of the node public-private key pair), Host Identity Tag (HIT, a truncated hash of its public key), and the Domain Names of its rendezvous servers (RVSs). This memo defines an Experimental Protocol for the Internet community.
RFC5204 - Host Identity Protocol (HIP) Rendezvous Extension
This document defines a rendezvous extension for the Host Identity Protocol (HIP). The rendezvous extension extends HIP and the HIP registration extension for initiating communication between HIP nodes via HIP rendezvous servers. Rendezvous servers improve reachability and operation when HIP nodes are multi-homed or mobile. This memo defines an Experimental Protocol for the Internet community.
RFC5203 - Host Identity Protocol (HIP) Registration Extension
This document specifies a registration mechanism for the Host Identity Protocol (HIP) that allows hosts to register with services, such as HIP rendezvous servers or middleboxes. This memo defines an Experimental Protocol for the Internet community.
RFC5202 - Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP)
This memo specifies an Encapsulated Security Payload (ESP) based mechanism for transmission of user data packets, to be used with the Host Identity Protocol (HIP). This memo defines an Experimental Protocol for the Internet community.
RFC5201 - Host Identity Protocol
This memo specifies the details of the Host Identity Protocol (HIP). HIP allows consenting hosts to securely establish and maintain shared IP-layer state, allowing separation of the identifier and locator roles of IP addresses, thereby enabling continuity of communications across IP address changes. HIP is based on a Sigma-compliant Diffie- Hellman key exchange, using public key identifiers from a new Host Identity namespace for mutual peer authentication. The protocol is designed to be resistant to denial-of-service (DoS) and man-in-the- middle (MitM) attacks. When used together with another suitable security protocol, such as the Encapsulated Security Payload (ESP), it provides integrity protection and optional encryption for upper- layer protocols, such as TCP and UDP. This memo defines an Experimental Protocol for the Internet community.
RFC5198 - Unicode Format for Network Interchange
The Internet today is in need of a standardized form for the transmission of internationalized "text" information, paralleling the specifications for the use of ASCII that date from the early days of the ARPANET. This document specifies that format, using UTF-8 with normalization and specific line-ending sequences. [STANDARDS-TRACK]
RFC5197 - On the Applicability of Various Multimedia Internet KEYing (MIKEY) Modes and Extensions
Multimedia Internet Keying (MIKEY) is a key management protocol that can be used for \%real-time applications. In particular, it has been defined focusing on the support of the Secure \%Real-time Transport Protocol (SRTP). MIKEY itself is standardized within RFC 3830 and defines four key distribution methods. Moreover, it is defined to allow extensions of the protocol. As MIKEY becomes more and more accepted, extensions to the base protocol arise, especially in terms of additional key distribution methods but also in terms of payload enhancements.
RFC5196 - Session Initiation Protocol (SIP) User Agent Capability Extension to Presence Information Data Format (PIDF)
Presence Information Data Format (PIDF) defines a common presence data format for Common Profile for Presence (CPP) compliant presence protocols. This memo defines a PIDF extension to represent SIP User Agent capabilities. [STANDARDS-TRACK]
RFC5195 - BGP-Based Auto-Discovery for Layer-1 VPNs
The purpose of this document is to define a BGP-based auto-discovery mechanism for Layer-1 VPNs (L1VPNs). The auto-discovery mechanism for L1VPNs allows the provider network devices to dynamically discover the set of Provider Edges (PEs) having ports attached to Customer Edge (CE) members of the same VPN. That information is necessary for completing the signaling phase of L1VPN connections. One main objective of a L1VPN auto-discovery mechanism is to support the "single-end provisioning" model, where addition of a new port to a given L1VPN would involve configuration changes only on the PE that has this port and on the CE that is connected to the PE via this port. [STANDARDS-TRACK]
This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]
RFC5245 - Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols
This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based multimedia sessions established with the offer/answer model. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN). ICE can be used by any protocol utilizing the offer/answer model, such as the Session Initiation Protocol (SIP). [STANDARDS-TRACK]
RFC5244 - Definition of Events for Channel-Oriented Telephony Signalling
This memo updates RFC 4733 to add event codes for telephony signals used for channel-associated signalling when carried in the telephony event RTP payload. It supersedes and adds to the original assignment of event codes for this purpose in Section 3.14 of RFC 2833. As documented in Appendix A of RFC 4733, some of the RFC 2833 events have been deprecated because their specification was ambiguous, erroneous, or redundant. In fact, the degree of change from Section 3.14 of RFC 2833 is such that implementations of the present document will be fully backward compatible with RFC 2833 implementations only in the case of full ABCD-bit signalling. This document expands and improves the coverage of signalling systems compared to RFC 2833. [STANDARDS-TRACK]
RFC5243 - OSPF Database Exchange Summary List Optimization
This document describes a backward-compatible optimization for the Database Exchange process in OSPFv2 and OSPFv3. In this optimization, a router does not list a Link State Advertisement (LSA) in Database Description packets sent to a neighbor, if the same or a more recent instance of the LSA was listed in a Database Description packet already received from the neighbor. This optimization reduces Database Description overhead by about 50% in large networks. This optimization does not affect synchronization, since it only omits unnecessary information from Database Description packets. This memo provides information for the Internet community.
RFC5242 - A Generalized Unified Character Code: Western European and CJK Sections
Many issues have been identified with the use of general-purpose character sets for internationalized domain names and similar purposes. This memo describes a fully unified coded character set for scripts based on Latin, Greek, Cyrillic, and Chinese (CJK) characters. It is not a complete specification of that character set. This memo provides information for the Internet community.
RFC5241 - Naming Rights in IETF Protocols
This document proposes a new revenue source for the IETF to support standardization activities: protocol field naming rights, i.e., the association of commercial brands with protocol fields. This memo describes a process for assignment of rights and explores some of the issues associated with the process. Individuals or organizations that wish to purchase naming rights for one or more protocol fields are expected to follow this process. This memo provides information for the Internet community.
RFC5240 - Protocol Independent Multicast (PIM) Bootstrap Router MIB
This document defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used for managing the Bootstrap Router (BSR) mechanism for PIM (Protocol Independent Multicast). [STANDARDS-TRACK]
RFC5239 - A Framework for Centralized Conferencing
This document defines the framework for Centralized Conferencing. The framework allows participants using various call signaling protocols, such as SIP, H.323, Jabber, Q.931 or ISDN User Part (ISUP), to exchange media in a centralized unicast conference. The Centralized Conferencing Framework defines logical entities and naming conventions. The framework also outlines a set of conferencing protocols, which are complementary to the call signaling protocols, for building advanced conferencing applications. The framework binds all the defined components together for the benefit of builders of conferencing systems. [STANDARDS-TRACK]
RFC5238 - Datagram Transport Layer Security (DTLS) over the Datagram Congestion Control Protocol (DCCP)
This document specifies the use of Datagram Transport Layer Security (DTLS) over the Datagram Congestion Control Protocol (DCCP). DTLS provides communications privacy for applications that use datagram transport protocols and allows client/server applications to communicate in a way that is designed to prevent eavesdropping and detect tampering or message forgery. DCCP is a transport protocol that provides a congestion-controlled unreliable datagram service. [STANDARDS-TRACK]
RFC5237 - IANA Allocation Guidelines for the Protocol Field
This document revises the IANA guidelines for allocating new Protocol field values in IPv4 header. It modifies the rules specified in RFC 2780 by removing the Expert Review option. The change will also affect the allocation of Next Header field values in IPv6. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
RFC5236 - Improved Packet Reordering Metrics
This document presents two improved metrics for packet reordering, namely, Reorder Density (RD) and Reorder Buffer-occupancy Density (RBD). A threshold is used to clearly define when a packet is considered lost, to bound computational complexity at O(N), and to keep the memory requirement for evaluation independent of N, where N is the length of the packet sequence. RD is a comprehensive metric that captures the characteristics of reordering, while RBD evaluates the sequences from the point of view of recovery from reordering.
RFC5235 - Sieve Email Filtering: Spamtest and Virustest Extensions
The Sieve email filtering language "spamtest", "spamtestplus", and "virustest" extensions permit users to use simple, portable commands for spam and virus tests on email messages. Each extension provides a new test using matches against numeric "scores". It is the responsibility of the underlying Sieve implementation to do the actual checks that result in proper input to the tests. [STANDARDS-TRACK]
RFC5234 - Augmented BNF for Syntax Specifications: ABNF
Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]
RFC5233 - Sieve Email Filtering: Subaddress Extension
On email systems that allow for 'subaddressing' or 'detailed addressing' (e.g., "ken+sieve@example.org"), it is sometimes desirable to make comparisons against these sub-parts of addresses. This document defines an extension to the Sieve Email Filtering Language that allows users to compare against the user and detail sub-parts of an address. [STANDARDS-TRACK]
RFC5232 - Sieve Email Filtering: Imap4flags Extension
Recent discussions have shown that it is desirable to set different IMAP (RFC 3501) flags on message delivery. This can be done, for example, by a Sieve interpreter that works as a part of a Mail Delivery Agent.
RFC5231 - Sieve Email Filtering: Relational Extension
This document describes the RELATIONAL extension to the Sieve mail filtering language defined in RFC 3028. This extension extends existing conditional tests in Sieve to allow relational operators. In addition to testing their content, it also allows for testing of the number of entities in header and envelope fields.
RFC5230 - Sieve Email Filtering: Vacation Extension
This document describes an extension to the Sieve email filtering language for an autoresponder similar to that of the Unix "vacation" command for replying to messages. Various safety features are included to prevent problems such as message loops. [STANDARDS-TRACK]
RFC5229 - Sieve Email Filtering: Variables Extension
In advanced mail filtering rule sets, it is useful to keep state or configuration details across rules. This document updates the Sieve filtering language (RFC 5228) with an extension to support variables. The extension changes the interpretation of strings, adds an action to store data in variables, and supplies a new test so that the value of a string can be examined. [STANDARDS-TRACK]
RFC5228 - Sieve: An Email Filtering Language
This document describes a language for filtering email messages at time of final delivery. It is designed to be implementable on either a mail client or mail server. It is meant to be extensible, simple, and independent of access protocol, mail architecture, and operating system. It is suitable for running on a mail server where users may not be allowed to execute arbitrary programs, such as on black box Internet Message Access Protocol (IMAP) servers, as the base language has no variables, loops, or ability to shell out to external programs. [STANDARDS-TRACK]
RFC5227 - IPv4 Address Conflict Detection
When two hosts on the same link attempt to use the same IPv4 address at the same time (except in rare special cases where this has been arranged by prior coordination), problems ensue for one or both hosts. This document describes (i) a simple precaution that a host can take in advance to help prevent this misconfiguration from happening, and (ii) if this misconfiguration does occur, a simple mechanism by which a host can passively detect, after the fact, that it has happened, so that the host or administrator may respond to rectify the problem. [STANDARDS-TRACK]
RFC5226 - Guidelines for Writing an IANA Considerations Section in RFCs
Many protocols make use of identifiers consisting of constants and other well-known values. Even after a protocol has been defined and deployment has begun, new values may need to be assigned (e.g., for a new option type in DHCP, or a new encryption or authentication transform for IPsec). To ensure that such quantities have consistent values and interpretations across all implementations, their assignment must be administered by a central authority. For IETF protocols, that role is provided by the Internet Assigned Numbers Authority (IANA).
RFC5225 - RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite
This document specifies ROHC (Robust Header Compression) profiles that efficiently compress RTP/UDP/IP (Real-Time Transport Protocol, User Datagram Protocol, Internet Protocol), RTP/UDP-Lite/IP (User Datagram Protocol Lite), UDP/IP, UDP-Lite/IP, IP and ESP/IP (Encapsulating Security Payload) headers.
RFC5224 - Diameter Policy Processing Application
This document describes the need for a new IANA Diameter Command Code to be used in a vendor-specific new application for invocation of Policy Processing (Policy Evaluation, or Evaluation and Enforcement). This application is needed as one of the implementations of the Open Mobile Alliance (OMA) Policy Evaluation, Enforcement and Management (PEEM) enabler, namely for the PEM-1 interface used to send a request/response for Policy Processing. This memo provides information for the Internet community.
RFC5223 - Discovering Location-to-Service Translation (LoST) Servers Using the Dynamic Host Configuration Protocol (DHCP)
The Location-to-Service Translation (LoST) Protocol describes an XML- based protocol for mapping service identifiers and geospatial or civic location information to service contact Uniform Resource Locators (URLs). LoST servers can be located anywhere, but a placement closer to the end host, e.g., in the access network, is desirable. In disaster situations with intermittent network connectivity, such a LoST server placement provides benefits regarding the resiliency of emergency service communication.
RFC5222 - LoST: A Location-to-Service Translation Protocol
This document describes an XML-based protocol for mapping service identifiers and geodetic or civic location information to service contact URIs. In particular, it can be used to determine the location-appropriate Public Safety Answering Point (PSAP) for emergency services. [STANDARDS-TRACK]
RFC5221 - Requirements for Address Selection Mechanisms
There are some problematic cases when using the default address selection mechanism that RFC 3484 defines. This document describes additional requirements that operate with RFC 3484 to solve the problems. This memo provides information for the Internet community.
RFC5220 - Problem Statement for Default Address Selection in Multi-Prefix Environments: Operational Issues of RFC 3484 Default Rules
A single physical link can have multiple prefixes assigned to it. In that environment, end hosts might have multiple IP addresses and be required to use them selectively. RFC 3484 defines default source and destination address selection rules and is implemented in a variety of OSs. But, it has been too difficult to use operationally for several reasons. In some environments where multiple prefixes are assigned on a single physical link, the host using the default address selection rules will experience some trouble in communication. This document describes the possible problems that end hosts could encounter in an environment with multiple prefixes. This memo provides information for the Internet community.
RFC5219 - A More Loss-Tolerant RTP Payload Format for MP3 Audio
This document describes an RTP (Real-Time Protocol) payload format for transporting MPEG (Moving Picture Experts Group) 1 or 2, layer III audio (commonly known as "MP3"). This format is an alternative to that described in RFC 2250, and performs better if there is packet loss. This document obsoletes RFC 3119, correcting typographical errors in the "SDP usage" section and pseudo-code appendices. [STANDARDS-TRACK]
RFC5218 - What Makes for a Successful Protocol?
The Internet community has specified a large number of protocols to date, and these protocols have achieved varying degrees of success. Based on case studies, this document attempts to ascertain factors that contribute to or hinder a protocol's success. It is hoped that these observations can serve as guidance for future protocol work. This memo provides information for the Internet community.
RFC5217 - Memorandum for Multi-Domain Public Key Infrastructure Interoperability
The objective of this document is to establish a terminology framework and to suggest the operational requirements of Public Key Infrastructure (PKI) domain for interoperability of multi-domain Public Key Infrastructure, where each PKI domain is operated under a distinct policy. This document describes the relationships between Certification Authorities (CAs), provides the definition and requirements for PKI domains, and discusses typical models of multi-domain PKI. This memo provides information for the Internet community.
RFC5216 - The EAP-TLS Authentication Protocol
The Extensible Authentication Protocol (EAP), defined in RFC 3748, provides support for multiple authentication methods. Transport Layer Security (TLS) provides for mutual authentication, integrity-protected ciphersuite negotiation, and key exchange between two endpoints. This document defines EAP-TLS, which includes support for certificate-based mutual authentication and key derivation.
RFC5215 - RTP Payload Format for Vorbis Encoded Audio
This document describes an RTP payload format for transporting Vorbis encoded audio. It details the RTP encapsulation mechanism for raw Vorbis data and the delivery mechanisms for the decoder probability model (referred to as a codebook), as well as other setup information.
RFC5214 - Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
The Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) connects dual-stack (IPv6/IPv4) nodes over IPv4 networks. ISATAP views the IPv4 network as a link layer for IPv6 and supports an automatic tunneling abstraction similar to the Non-Broadcast Multiple Access (NBMA) model. This memo provides information for the Internet community.
RFC5213 - Proxy Mobile IPv6
Network-based mobility management enables IP mobility for a host without requiring its participation in any mobility-related signaling. The network is responsible for managing IP mobility on behalf of the host. The mobility entities in the network are responsible for tracking the movements of the host and initiating the required mobility signaling on its behalf. This specification describes a network-based mobility management protocol and is referred to as Proxy Mobile IPv6. [STANDARDS-TRACK]
RFC5212 - Requirements for GMPLS-Based Multi-Region and Multi-Layer Networks (MRN/MLN)
Most of the initial efforts to utilize Generalized MPLS (GMPLS) have been related to environments hosting devices with a single switching capability. The complexity raised by the control of such data planes is similar to that seen in classical IP/MPLS networks. By extending MPLS to support multiple switching technologies, GMPLS provides a comprehensive framework for the control of a multi-layered network of either a single switching technology or multiple switching technologies.
RFC5211 - An Internet Transition Plan
This memo provides one possible plan for transitioning the Internet from a predominantly IPv4-based connectivity model to a predominantly IPv6-based connectivity model. This memo provides information for the Internet community.
RFC5210 - A Source Address Validation Architecture (SAVA) Testbed and Deployment Experience
Because the Internet forwards packets according to the IP destination address, packet forwarding typically takes place without inspection of the source address and malicious attacks have been launched using spoofed source addresses. In an effort to enhance the Internet with IP source address validation, a prototype implementation of the IP Source Address Validation Architecture (SAVA) was created and an evaluation was conducted on an IPv6 network. This document reports on the prototype implementation and the test results, as well as the lessons and insights gained from experimentation. This memo defines an Experimental Protocol for the Internet community.
RFC5209 - Network Endpoint Assessment (NEA): Overview and Requirements
This document defines the problem statement, scope, and protocol requirements between the components of the NEA (Network Endpoint Assessment) reference model. NEA provides owners of networks (e.g., an enterprise offering remote access) a mechanism to evaluate the posture of a system. This may take place during the request for network access and/or subsequently at any time while connected to the network. The learned posture information can then be applied to a variety of compliance-oriented decisions. The posture information is frequently useful for detecting systems that are lacking or have out-of-date security protection mechanisms such as: anti-virus and host-based firewall software. In order to provide context for the requirements, a reference model and terminology are introduced. This memo provides information for the Internet community.
RFC5208 - Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification Version 1.2
This document represents a republication of PKCS #8 v1.2 from RSA Laboratories' Public Key Cryptography Standard (PKCS) series. Change control is transferred to the IETF. The body of this document, except for the security considerations section, is taken directly from the PKCS #8 v1.2 specification.
RFC5207 - NAT and Firewall Traversal Issues of Host Identity Protocol (HIP) Communication
The Host Identity Protocol (HIP) changes the way in which two Internet hosts communicate. One key advantage over other schemes is that HIP does not require modifications to the traditional network- layer functionality of the Internet, i.e., its routers. In the current Internet, however, many devices other than routers modify the traditional network-layer behavior of the Internet. These "middleboxes" are intermediary devices that perform functions other than the standard functions of an IP router on the datagram path between source and destination hosts. Whereas some types of middleboxes may not interfere with HIP at all, others can affect some aspects of HIP communication, and others can render HIP communication impossible. This document discusses the problems associated with HIP communication across network paths that include specific types of middleboxes, namely, network address translators and firewalls. It identifies and discusses issues in the current HIP specifications that affect communication across these types of middleboxes. This document is a product of the IRTF HIP Research Group. This memo provides information for the Internet community.
RFC5206 - End-Host Mobility and Multihoming with the Host Identity Protocol
This document defines mobility and multihoming extensions to the Host Identity Protocol (HIP). Specifically, this document defines a general "LOCATOR" parameter for HIP messages that allows for a HIP host to notify peers about alternate addresses at which it may be reached. This document also defines elements of procedure for mobility of a HIP host -- the process by which a host dynamically changes the primary locator that it uses to receive packets. While the same LOCATOR parameter can also be used to support end-host multihoming, detailed procedures are left for further study. This memo defines an Experimental Protocol for the Internet community.
RFC5205 - Host Identity Protocol (HIP) Domain Name System (DNS) Extensions
This document specifies a new resource record (RR) for the Domain Name System (DNS), and how to use it with the Host Identity Protocol (HIP). This RR allows a HIP node to store in the DNS its Host Identity (HI, the public component of the node public-private key pair), Host Identity Tag (HIT, a truncated hash of its public key), and the Domain Names of its rendezvous servers (RVSs). This memo defines an Experimental Protocol for the Internet community.
RFC5204 - Host Identity Protocol (HIP) Rendezvous Extension
This document defines a rendezvous extension for the Host Identity Protocol (HIP). The rendezvous extension extends HIP and the HIP registration extension for initiating communication between HIP nodes via HIP rendezvous servers. Rendezvous servers improve reachability and operation when HIP nodes are multi-homed or mobile. This memo defines an Experimental Protocol for the Internet community.
RFC5203 - Host Identity Protocol (HIP) Registration Extension
This document specifies a registration mechanism for the Host Identity Protocol (HIP) that allows hosts to register with services, such as HIP rendezvous servers or middleboxes. This memo defines an Experimental Protocol for the Internet community.
RFC5202 - Using the Encapsulating Security Payload (ESP) Transport Format with the Host Identity Protocol (HIP)
This memo specifies an Encapsulated Security Payload (ESP) based mechanism for transmission of user data packets, to be used with the Host Identity Protocol (HIP). This memo defines an Experimental Protocol for the Internet community.
RFC5201 - Host Identity Protocol
This memo specifies the details of the Host Identity Protocol (HIP). HIP allows consenting hosts to securely establish and maintain shared IP-layer state, allowing separation of the identifier and locator roles of IP addresses, thereby enabling continuity of communications across IP address changes. HIP is based on a Sigma-compliant Diffie- Hellman key exchange, using public key identifiers from a new Host Identity namespace for mutual peer authentication. The protocol is designed to be resistant to denial-of-service (DoS) and man-in-the- middle (MitM) attacks. When used together with another suitable security protocol, such as the Encapsulated Security Payload (ESP), it provides integrity protection and optional encryption for upper- layer protocols, such as TCP and UDP. This memo defines an Experimental Protocol for the Internet community.
RFC5198 - Unicode Format for Network Interchange
The Internet today is in need of a standardized form for the transmission of internationalized "text" information, paralleling the specifications for the use of ASCII that date from the early days of the ARPANET. This document specifies that format, using UTF-8 with normalization and specific line-ending sequences. [STANDARDS-TRACK]
RFC5197 - On the Applicability of Various Multimedia Internet KEYing (MIKEY) Modes and Extensions
Multimedia Internet Keying (MIKEY) is a key management protocol that can be used for \%real-time applications. In particular, it has been defined focusing on the support of the Secure \%Real-time Transport Protocol (SRTP). MIKEY itself is standardized within RFC 3830 and defines four key distribution methods. Moreover, it is defined to allow extensions of the protocol. As MIKEY becomes more and more accepted, extensions to the base protocol arise, especially in terms of additional key distribution methods but also in terms of payload enhancements.
RFC5196 - Session Initiation Protocol (SIP) User Agent Capability Extension to Presence Information Data Format (PIDF)
Presence Information Data Format (PIDF) defines a common presence data format for Common Profile for Presence (CPP) compliant presence protocols. This memo defines a PIDF extension to represent SIP User Agent capabilities. [STANDARDS-TRACK]
RFC5195 - BGP-Based Auto-Discovery for Layer-1 VPNs
The purpose of this document is to define a BGP-based auto-discovery mechanism for Layer-1 VPNs (L1VPNs). The auto-discovery mechanism for L1VPNs allows the provider network devices to dynamically discover the set of Provider Edges (PEs) having ports attached to Customer Edge (CE) members of the same VPN. That information is necessary for completing the signaling phase of L1VPN connections. One main objective of a L1VPN auto-discovery mechanism is to support the "single-end provisioning" model, where addition of a new port to a given L1VPN would involve configuration changes only on the PE that has this port and on the CE that is connected to the PE via this port. [STANDARDS-TRACK]